Pierre Auger Observatory

studying the universe's highest energy particles

Ultrahigh Cosmic Rays: The highest energy frontier

Humberto Salazar

(FCFM-BUAP)

for the Pierre Auger Collaboration XIII Mexican Worshop on Particle and Fields, León, Gto, 2011

SCIENTIFIC OBJETIVES:

Spectrum: CR flux for E > 10¹⁸ eV

Arrival directions: search for anisotropies (identify the sources)

Composition: light or heavy nuclei, photons, neutrinos, others?

Study of interactions at energies unreachable at accelerators

The Auger Observatory in the Southern Hemisphere Hybrid shower measurements Fully deployed in Argentina since June 2008

1600 water Cherenkov stations24 fluorescence telescopes (30°×30°)

Pierre Auger Observatory in Argentina

SD energy calibration with FD

Calibration made using events with independent SD and Hybrid trigger and reconstruction

Systematic uncertainty 7% (15%) at 10 EeV (100 EeV)

Hybrid energy spectrum

- very good agreement with SD
- difference in flux with old publication less than 2%

- difference w.r.t PLB due to changes in calibration curve
- very high statistics, spectral features very well defined

Energy shift of 25% applied to Auger combined spectrum

Inclined showers add another 5300 km² sr yr (→ #724)

Exposure of infill array: (26.4±1.3) km² sr yr

The Auger Sky above 60 EeV

Simulated data sets based on isotropy (I) and Swift-BAT model (II) compared to data (black line/point).

Update of Correlation with VCV-AGN

Update on Cen A

KS test yields 4% isotropic probability Largest departure now at 24°: 19 observed / 7.6 expected

<X_{max}> vs. Energy

- Results compatible with PRL (2010)
- Data are best described with two slopes; break is near the same energy as the ankle feature of the spectrum
- At high energy <X_{max}> increases slowly with energy.

Shower Depths of Maximum X_{mex}

FIG. 2. $\langle X_{\text{max}} \rangle$ as a function of energy. Lines denote a fit with a broken line in lg*E*. The systematic uncertainties of $\langle X_{\text{max}} \rangle$ are indicated by a dashed line. The number of events in each energy bin is displayed below the data points. HiRes data [10] are shown for comparison.

RMS(X_{max}) vs. Energy

Compatible with published results PRL(2010)

• There is a change in behavior around the same energy as $<X_{max}>$: above 2.5 10¹⁸ eV there is a fast decrease of RMS(X_{max}) towards the values expected for heavy primaries.

vs energy

Trans-GZK composition is simpler

Light and intermediate nuclei photodisintegrate rapidly.

Only protons and/or heavy nuclei survive more than 20 Mpc distances.

Cosmic magnetic fields should make highly charged nuclei almost isotropic.

The Auger UHE Neutrino Observatory

Neutrinos can be identified as "young" showers at very great atmospheric slant depth (either upward or downward).

τ

Auger exposure to tau Neutrinos

Earth Skimming V_{τ}

zenith angle ~ 90-92°

The UHE Gamma Ray Astronomical Window

Photon showers penetrate deeper than hadronic showers.

They can be recognized individually with hybrid measurements.

A photon component can be measured statistically by the surface array.

UPPER LIMITS TO THE INTEGRAL PHOTON FLUX

- ¹ The relation between penetration length and p-air cross section can be
- found from simulations after correcting the low energy values using
- Tevatron measurements, and Glauber theory.

Description	Impact on $\sigma_{p ext{-air}}$
Λ_η systematics	$\pm 15{\sf mb}$
Hadronic interaction	models $^{+19}_{-8}$ mb
Energy scale	$\pm 7{ m mb}$
Conversion of Λ_η to	$\sigma_{p-air}^{\mathrm{prod}} = \pm 7 mb$
Photons, $< 0.5 \%$	$< +10{ m mb}$
Helium, 10%	-12mb
Helium, 25%	-30 mb
Helium, 50%	-80 mb
Total (25 % helium)	$-36\mathrm{mb}$, $+28\mathrm{mb}$

 $\sigma_{\rm p-air} = \begin{bmatrix} 505 \pm 22_{\rm stat} \pm \begin{pmatrix} +28 \\ -34 \end{pmatrix}_{\rm sys} \end{bmatrix} \, \rm mb$

Proton-proton cross section Using Glauber theory is possible to estimate the proton-proton inelastic cross section.

·CONCLUSIONS

•Far greater exposure is needed to

- Identify the class of sources via anisotropy
- Measure the spectra of bright sources or source regions
- Determine the particle type(s) above 55 EeV
- If protons, measure interaction properties above 250 TeV (CM)
- Determine the diffuse cosmogenic intensity of neutrinos and photons
- Detect cosmogenic neutrinos and photons

An Air Fluorescence Telescope

