Possible texture zeros for mass matrices of the quarks and leptons

Félix González Canales Instituto de Física UNAM

XIII Mexican Workshop on Particles and Fields León, Guanajuato, Octuber 2010

Félix González Canales Instituto de Física UNAM Possible texture zeros for mass matrices of the quarks and lep

イロト イポト イヨト イヨト

contents:

- Prom the Experimental Data of Neutrino Oscillations
- 3 Universal Form For Mass Matrices
- 4 Mixing Matrices
- 5 The effective Majorana masses

6 Conclusions

Motivations

From the Experimental Data of Neutrino Oscillations Universal Form For Mass Matrices Mixing Matrices The effective Majorana masses Conclusions

Theoretical Motivation

The idea of S_3 flavor symmetry and its explicit breaking,

 $S_{3L} imes S_{3R} \supset S_{2L} imes S_{2R} \supset S_2^{\mathbf{diag}}$

has been succesfully realized as a mass matrix with two texture zeroes in the quark sector to interpret the strong mass hierarchy of up and down type quarks.

$$\mathbf{M}_{\mathbf{i}} = \underbrace{\begin{pmatrix} 0 & A_i & 0 \\ A_i^* & B_i & C_i \\ \hline 0 & C_i & D_i \end{pmatrix}}_{2 \oplus 1} \quad i = u, d$$

Experimental Motivation

The mass spectrum of the charged leptons exhibits a hierarchy similar to the quark's one.

A. Mondragon and E. Rodriguez Jauregui Phys. Rev. D 61 113002 + (= + (= +

Félix González Canales Instituto de Física UNAM

Theoretical Motivation for Dirac Neutrinos

Gran Unified Theories (GUT's) with a gauge group SO(10):

• The mass matrix with two texture zeroes can describes the data on neutrino masses and mixings.

W. Buchmuller and D. Wyler Phys. Lett. B 521, 291 (2001)

M. Bando and M. Obara, Prog. Theor. Phys. 109, 995 (2003) .

• From supersymmetry, the Dirac neutrinos and quarks-u have a similar hierarchy in the mass spectrum. It would be natural to take for the Dirac neutrino a mass matrix with two texture zeros.

イロト イポト イヨト

First Unified Treatment of Quarks and Leptons

Universal form for the mass matrix of all Dirac fermions in the theory

$$\mathbf{M_{i}} = \begin{pmatrix} 0 & A_{i} & 0\\ A_{i}^{*} & B_{i} & C_{i}\\ 0 & C_{i} & D_{i} \end{pmatrix} \quad i = u, d, l, \nu_{D}$$

Some important features of M_i .

- Is a Hermitian matrix, $M_i = M_i^{\dagger}$.
- The phases in M_i may be factorized out as $M_i = P^{\dagger}\overline{M}_i P$;

$$\mathbf{M_i} = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & e^{-i\phi} & 0 \\ 0 & 0 & e^{-i\phi} \end{array} \right) \left(\begin{array}{ccc} 0 & |a| & 0 \\ |a| & b & c \\ 0 & c & d \end{array} \right) \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & e^{i\phi} & 0 \\ 0 & 0 & e^{i\phi} \end{array} \right).$$

< □ > < ঐ > < ≧ > < ≧ > ≅ < ♡ ৭ ি
 Possible texture zeros for mass matrices of the quarks and lep

From the Experimental Data of Neutrino Oscillations

M.C. Gonzalez-Gracia Phys.Rept.460:1-129,2008.

$$\begin{split} \underbrace{\Delta m_{21}^2}_{p_{21}} &= 7.67^{+0.67}_{-0.21} \times 10^{-5} \mathrm{eV}^2, \\ m_{\nu_2}^2 &- m_{\nu_1}^2 \\ \underbrace{\Delta m_{31}^2}_{|m_{\nu_3}^2 - m_{\nu_1}^2|} &= \begin{cases} -2.37 \pm 0.15 \times 10^{-3} \mathrm{eV}^2, \\ (m_{\nu_2} > m_{\nu_1} > m_{\nu_3}) \\ +2.46 \pm 0.15 \times 10^{-3} \mathrm{eV}^2, \\ (m_{\nu_3} > m_{\nu_2} > m_{\nu_1}) \end{cases} \end{split}$$

Possible Hierarchies for neutrino masses.

In minimal extensions of the standard model, representing the left handed neutrinos as Dirac particles is not favored because there is no explanation to the fact that neutrinos have a mass much lighter than their corresponding charged leptons.

Félix González Canales Instituto de Física UNAM

Majorana Neutrinos

The neutrinos naturally acquire their small masses through type-I seesaw mechanism: $M_{\nu_L} = M_{\nu_D} M_{\nu_R}^{-1} M_{\nu_D}^T$

Félix González Canales Instituto de Física UNAM

< □ > < ঐ > < ই > < ই > ই পি Q ↔
Possible texture zeros for mass matrices of the quarks and lep

Majorana Neutrinos

The neutrinos naturally acquire their small masses through type-I seesaw mechanism: $M_{\nu_L} = M_{\nu_D} M_{\nu_R}^{-1} M_{\nu_D}^T$

In a Unified Treatment of Dirac Fermions

$$\begin{pmatrix} 0 & A_{\nu_D} & 0 \\ A_{\nu_D}^* & B_{\nu_D} & C_{\nu_D} \\ 0 & C_{\nu_D} & D_{\nu_D} \end{pmatrix} \underbrace{ M_{\nu_R}^{-1}}_{\text{shape?}} \begin{pmatrix} 0 & A_{\nu_D}^* & 0 \\ A_{\nu_D} & B_{\nu_D} & C_{\nu_D} \\ 0 & C_{\nu_D} & D_{\nu_D} \end{pmatrix},$$

Félix González Canales Instituto de Física UNAM

< □ > < ⊡ > < ≧ > < ≧ > ≤ ≧
 Possible texture zeros for mass matrices of the quarks and lep

Second Unified Treatment of Quarks and Leptons

Universal Form For Mass Matrices

The mass matrices of all Dirac fermions have a universal form with two texture zeros and a normal hierarchy in spectrum mass. Then, the mass matrix of the left-handed Majorana neutrinos also has form with two zeros texture.

$$\begin{pmatrix} 0 & a_{\nu_{L}} & 0 \\ a_{\nu_{L}} & b_{\nu_{L}} & c_{\nu_{L}} \\ 0 & c_{\nu_{L}} & d_{\nu_{L}} \end{pmatrix} = \begin{pmatrix} 0 & A_{\nu_{D}} & 0 \\ A_{\nu_{D}}^{*} & B_{\nu_{D}} & C_{\nu_{D}} \\ 0 & C_{\nu_{D}} & D_{\nu_{D}} \end{pmatrix} \underbrace{\mathcal{M}_{\nu_{R}}^{-1}}_{\text{shape?}} \begin{pmatrix} 0 & A_{\nu_{D}}^{*} & 0 \\ A_{\nu_{D}} & B_{\nu_{D}} & C_{\nu_{D}} \\ 0 & C_{\nu_{D}} & D_{\nu_{D}} \end{pmatrix},$$

$$\underbrace{\mathcal{M}_{\nu_{R}}}_{\substack{\mu_{R}}} \begin{pmatrix} 0 & a_{\nu_{R}} & 0 \\ a_{\nu_{R}} & b_{\nu_{R}} & c_{\nu_{R}} \\ 0 & c_{\nu_{R}} & d_{\nu_{R}} \end{pmatrix} \begin{pmatrix} 0 & a_{\nu_{R}} & 0 \\ a_{\nu_{R}} & 0 & c_{\nu_{R}} \\ 0 & c_{\nu_{R}} & d_{\nu_{R}} \end{pmatrix}} \begin{pmatrix} 0 & a_{\nu_{R}} & 0 \\ a_{\nu_{R}} & 0 & c_{\nu_{R}} \\ 0 & 0 & d_{\nu_{R}} \end{pmatrix} \begin{pmatrix} 0 & a_{\nu_{R}} & 0 \\ a_{\nu_{R}} & 0 & c_{\nu_{R}} \\ 0 & 0 & d_{\nu_{R}} \end{pmatrix} \begin{pmatrix} 0 & a_{\nu_{R}} & 0 \\ a_{\nu_{R}} & 0 & c_{\nu_{R}} \\ 0 & 0 & d_{\nu_{R}} \end{pmatrix} \begin{pmatrix} 0 & a_{\nu_{R}} & 0 \\ a_{\nu_{R}} & 0 & c_{\nu_{R}} \\ 0 & 0 & d_{\nu_{R}} \end{pmatrix} \begin{pmatrix} 0 & a_{\nu_{R}} & 0 \\ a_{\nu_{R}} & 0 & c_{\nu_{R}} \\ 0 & 0 & d_{\nu_{R}} \end{pmatrix} \begin{pmatrix} 0 & a_{\nu_{R}} & 0 \\ a_{\nu_{R}} & 0 & c_{\nu_{R}} \\ 0 & 0 & d_{\nu_{R}} \end{pmatrix} \begin{pmatrix} 0 & a_{\nu_{R}} & 0 \\ a_{\nu_{R}} & 0 & c_{\nu_{R}} \\ 0 & 0 & d_{\nu_{R}} \end{pmatrix} \begin{pmatrix} 0 & a_{\nu_{R}} & 0 \\ a_{\nu_{R}} & 0 & c_{\nu_{R}} \end{pmatrix}$$

Félix González Canales Instituto de Física UNAM

$$M_{\nu_{L}} = \begin{pmatrix} 0 & a_{\nu_{L}} & 0 \\ a_{\nu_{L}} & b_{\nu_{L}} & c_{\nu_{L}} \\ 0 & c_{\nu_{L}} & d_{\nu_{L}} \end{pmatrix},$$

Texture zeros The number of texture zeros in the mass matrix M_{ν_R} , is present in the elements b_{ν_L} and c_{ν_L} .

$$\begin{split} \mathbf{a}_{\nu_{L}} &= \frac{|\mathbf{A}_{\nu_{D}}|^{2}}{\mathbf{a}_{\nu_{R}}}; \qquad \mathbf{d}_{\nu_{L}} = \frac{D_{\nu_{D}}^{2}}{\mathbf{d}_{\nu_{R}}}, \\ \mathbf{b}_{\nu_{L}} &= \frac{C_{\nu_{D}}^{2}}{\mathbf{d}_{\nu_{R}}} + \frac{c_{\nu_{R}}^{2} - \mathbf{b}_{\nu_{R}} \mathbf{d}_{\nu_{R}}}{\mathbf{d}_{\nu_{R}}} \frac{A_{\nu_{D}}^{*2}}{\mathbf{a}_{\nu_{R}}^{2}} \\ &+ 2\left(B_{\nu_{D}} - \frac{C_{\nu_{D}} \mathbf{c}_{\nu_{R}}}{\mathbf{d}_{\nu_{R}}}\right) \frac{A_{\nu_{D}}^{*}}{\mathbf{a}_{\nu_{R}}}, \\ \mathbf{c}_{\nu_{L}} &= \frac{C_{\nu_{D}} D_{\nu_{D}}}{\mathbf{d}_{\nu_{R}}} + \left(C_{\nu_{D}} - \frac{c_{\nu_{R}} D_{\nu_{D}}}{\mathbf{d}_{\nu_{R}}}\right) \frac{A_{\nu_{D}}^{*}}{\mathbf{a}_{\nu_{R}}}, \end{split}$$

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・

3

Félix González Canales Instituto de Física UNAM Possible texture zeros for mass matrices of the quarks and lep

$$M_{\nu_L} = \begin{pmatrix} 0 & a_{\nu_L} & 0 \\ a_{\nu_L} & b_{\nu_L} & c_{\nu_L} \\ 0 & c_{\nu_L} & d_{\nu_L} \end{pmatrix},$$

Texture zeros The number of texture zeros in the mass matrix M_{ν_R} , is present in the elements b_{ν_l} and c_{ν_l} .

$$\begin{split} \mathbf{a}_{\nu_{L}} &= \frac{|\mathbf{A}_{\nu_{D}}|^{2}}{\mathbf{a}_{\nu_{R}}}; \qquad \mathbf{d}_{\nu_{L}} = \frac{D_{\nu_{D}}^{2}}{d_{\nu_{R}}}, \\ \mathbf{b}_{\nu_{L}} &= \frac{C_{\nu_{D}}^{2}}{d_{\nu_{R}}} + \frac{c_{\nu_{R}}^{2} - \mathbf{b}_{\nu_{R}} d_{\nu_{R}}}{d_{\nu_{R}}} \frac{A_{\nu_{D}}^{*2}}{\mathbf{a}_{\nu_{R}}^{2}} \\ + 2\left(B_{\nu_{D}} - \frac{C_{\nu_{D}} c_{\nu_{R}}}{d_{\nu_{R}}}\right) \frac{A_{\nu_{D}}^{*}}{\mathbf{a}_{\nu_{R}}}, \\ \mathbf{c}_{\nu_{L}} &= \frac{C_{\nu_{D}} D_{\nu_{D}}}{d_{\nu_{R}}} + \left(C_{\nu_{D}} - \frac{c_{\nu_{R}} D_{\nu_{D}}}{d_{\nu_{R}}}\right) \frac{A_{\nu_{D}}^{*}}{\mathbf{a}_{\nu_{R}}}, \end{split}$$

Matrices para los neutrinos: $M_{\nu_L} = Q \bar{M}_{\nu_L} Q$, $M_{\nu_R} = R \bar{M}_{\nu_R} R$ $\bar{M}_{\nu_R} = \begin{pmatrix} 0 & a_{\nu_R} & 0 \\ a_{\nu_R} & |b_{\nu_R}| & |c_{\nu_R}| \\ 0 & |c_{\nu_R}| & d_{\nu_R} \end{pmatrix}$ $R = \operatorname{diag} \left\{ e^{-i\phi_c}, e^{i\phi_c}, 1 \right\}$

$$M_{\nu_L} = \begin{pmatrix} 0 & a_{\nu_L} & 0 \\ a_{\nu_L} & b_{\nu_L} & c_{\nu_L} \\ 0 & c_{\nu_L} & d_{\nu_L} \end{pmatrix},$$

Texture zeros The number of texture zeros in the mass matrix M_{ν_R} , is present in the elements b_{ν_l} and c_{ν_l} .

$$\begin{split} \mathbf{a}_{\nu_{L}} &= \frac{|\mathbf{A}_{\nu_{D}}|^{2}}{\mathbf{a}_{\nu_{R}}}; \qquad \mathbf{d}_{\nu_{L}} = \frac{D_{\nu_{D}}^{2}}{\mathbf{d}_{\nu_{R}}}, \\ \mathbf{b}_{\nu_{L}} &= \frac{C_{\nu_{D}}^{2}}{\mathbf{d}_{\nu_{R}}} + \frac{c_{\nu_{R}}^{2} - \mathbf{b}_{\nu_{R}} \mathbf{d}_{\nu_{R}}}{\mathbf{d}_{\nu_{R}}} \frac{A_{\nu_{D}}^{*2}}{\mathbf{a}_{\nu_{R}}^{2}} \\ &+ 2 \left(B_{\nu_{D}} - \frac{C_{\nu_{D}} c_{\nu_{R}}}{\mathbf{d}_{\nu_{R}}} \right) \frac{A_{\nu_{D}}^{*}}{\mathbf{a}_{\nu_{R}}}, \\ \mathbf{c}_{\nu_{L}} &= \frac{C_{\nu_{D}} D_{\nu_{D}}}{\mathbf{d}_{\nu_{R}}} + \left(C_{\nu_{D}} - \frac{c_{\nu_{R}} D_{\nu_{D}}}{\mathbf{d}_{\nu_{R}}} \right) \frac{A_{\nu_{D}}^{*}}{\mathbf{a}_{\nu_{R}}}, \end{split}$$

Félix González Canales Instituto de Física UNAM

Second Unified Treatment of Quarks and Leptons

For all Dirac fermions

$$M_{j} = P_{j}^{\dagger} \overline{M}_{j} P_{j} \ (j = u, d, l)$$

$$P_{j} = \text{diag} \left\{ 1, e^{-i\phi_{j}}, e^{-i\phi_{j}} \right\}$$

$$\begin{pmatrix} 0 & |a_{j}| & 0 \\ |a_{j}| & b_{j} & c_{j} \\ 0 & c_{j} & d_{j} \end{pmatrix}$$

For left-handed neutrinos $M_{\nu_L} = Q \bar{M}_{\nu_L} Q,$ $Q = \text{diag} \{1, e^{-i\varphi}, e^{i\varphi}\}$

$$\left(egin{array}{cccc} 0 & a_{
u_L} & 0 \ a_{
u_L} & |b_{
u_L}| & |c_{
u_L}| \ 0 & |c_{
u_L}| & d_{
u_L} \end{array}
ight)$$

The mass matrices can be diagonalized by an unitary matrix , so that:

$$M_j = U_j^{\dagger} ext{ diag } (m_{j1}, m_{j2}, m_{j3}) U_j$$

$$M_{\nu_{L}} = U_{\nu} \operatorname{diag} (m_{\nu 1}, m_{\nu 2}, m_{\nu 3}) U_{\nu}^{T}$$

with the unitary matrix:

$$U_j \equiv \mathbb{O}_j^{^{\mathrm{T}}} P_j, \qquad U_{\nu} \equiv Q \mathbb{O}_{\nu}$$

Félix González Canales Instituto de Física UNAM

Equivalent Mass Matrices

The real representation of the group S_3

$$D(E) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad D(A_1) = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad D(A_2) = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix},$$
$$D(A_3) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad D(A_4) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad D(A_5) = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$$

Similarity transformation

$$DU_{j} \underbrace{\mathbb{I}}_{DD^{T}} M_{j} \underbrace{\mathbb{I}}_{DD^{T}} U_{j}^{\dagger} D^{T} = D \operatorname{diag} (m_{j1}, m_{j2}, m_{j3}) D^{T}$$

$$DU_{\nu}^{\dagger} \underbrace{\mathbb{I}}_{DD^{T}} M_{\nu_{\nu_{L}}} \underbrace{\mathbb{I}}_{DD^{T}} U_{\nu}^{*} D^{T} = D \operatorname{diag} (m_{\nu 1}, m_{\nu 2}, m_{\nu 3}) D^{T}$$

Equivalent Class of Mass Matrices

$$\begin{pmatrix} 0 & a & 0 \\ a & b & c \\ 0 & c & d \end{pmatrix} \qquad \begin{pmatrix} 0 & 0 & a \\ 0 & b & c \\ a & c & d \end{pmatrix} \qquad \begin{pmatrix} b & 0 & c \\ 0 & 0 & a \\ c & a & d \end{pmatrix}$$

• All these matrices are equivalent, since they have the same invariant

$$\operatorname{tr} \{M\} = b + d, \quad \det \{M\} = -a^2 d$$
$$\chi \equiv \frac{1}{2} \left(\operatorname{tr} \{M^2\} - \operatorname{tr} \{M\}^2 \right) = a^2 + c^2 - bd$$

Félix González Canales Instituto de Física UNAM

< □ > < ঐ > < ই > < ই > ই পি Q ↔
Possible texture zeros for mass matrices of the quarks and lep

Equivalent Class of Mass Matrices

$$\begin{pmatrix} 0 & a & 0 \\ a & b & c \\ 0 & c & d \end{pmatrix} \qquad \begin{pmatrix} 0 & 0 & a \\ 0 & b & c \\ a & c & d \end{pmatrix} \qquad \begin{pmatrix} b & 0 & c \\ 0 & 0 & a \\ c & a & d \end{pmatrix}$$

• All these matrices are equivalent, since they have the same invariant

tr {*M*} = *b* + *d*, det {*M*} = -*a*²*d*
$$\chi \equiv \frac{1}{2} \left(\text{tr} \{ M^2 \} - \text{tr} \{ M \}^2 \right) = a^2 + c^2 - bd$$

Eigenvalues

$$\lambda_i^3 - \operatorname{Tr} \{M\} \, \lambda_i^2 - \chi \lambda_i - \det \{M\} = 0.$$

Equivalence Classes for matrices with two texture zeros. The "*" and "×" denote an arbitrary non-vanishing matrix element on the diagonal and off-diagonal entries, respectively.

Class	Tentures	Invariants	
Ciass	lextures	Symmetric	Hermitian
I	$ \begin{pmatrix} 0 & \times & 0 \\ (& \star & \times \\ 0 & \star & \star \end{pmatrix} \begin{pmatrix} 0 & 0 & \times \\ 0 & \star & \times \\ \times & \times & \star \end{pmatrix} \begin{pmatrix} \star & 0 & \times \\ 0 & 0 & \times \\ \times & \times & \star \end{pmatrix} \begin{pmatrix} \star & \times & 0 \\ \times & \star & \star \\ \times & \star & 0 \end{pmatrix} \begin{pmatrix} \star & \times & 0 \\ \times & \star & \times \\ 0 & \star & 0 \end{pmatrix} $	$\begin{aligned} \mathrm{Tr} &= b + d \\ \mathrm{det} &= -a^2 d \\ \chi &= a^2 + c^2 \\ -bd \end{aligned}$	$\begin{array}{l} \mathrm{Tr} = b+d \\ \mathrm{det} = - a ^2 d \\ \chi = a ^2 + c ^2 \\ -bd \end{array}$
п	$\left(\begin{array}{ccc} 0 & \times & \times \\ \times & \star & 0 \\ \times & 0 & \star \end{array}\right) \left(\begin{array}{ccc} \star & \times & 0 \\ \times & 0 & \times \\ 0 & \times & \star \end{array}\right) \left(\begin{array}{ccc} \star & 0 & \times \\ 0 & \star & \times \\ \times & \times & 0 \end{array}\right)$	$Tr = b + d$ $det = -a^2d$ $-e^2b$ $\chi = a^2 + e^2$ $-bd$	$\begin{aligned} \mathrm{Tr} &= b + d \\ \mathrm{det} &= - a ^2 d \\ - e ^2 b \\ \chi &= a ^2 + e ^2 \\ -bd \end{aligned}$
ш	$\left(\begin{array}{ccc} 0 & \times & \times \\ \times & 0 & \times \\ \times & \times & \star \end{array}\right) \left(\begin{array}{ccc} 0 & \times & \times \\ \times & \star & \times \\ \times & \times & 0 \end{array}\right) \left(\begin{array}{ccc} \star & \times & \times \\ \times & \star & \times \\ \times & \times & 0 \end{array}\right) \left(\begin{array}{ccc} \star & \times & \times \\ \times & 0 & \times \\ \times & \times & 0 \end{array}\right)$	$Tr = d$ $det = 2ace - a^{2}d$ $\chi = a^{2} + c^{2}$ $+e^{2}$	$\begin{aligned} &\operatorname{Tr} = d \\ &\operatorname{det} = a^* c^* e \\ &+ a c e^* - a ^2 d \\ &\chi = a ^2 + c ^2 \\ &+ e ^2 \end{aligned}$
IV	$\left(\begin{array}{ccc} \star & 0 & 0 \\ 0 & \star & \times \\ 0 & \times & \star \end{array}\right) \left(\begin{array}{ccc} \star & 0 & \times \\ 0 & \star & 0 \\ \times & 0 & \star \end{array}\right) \left(\begin{array}{ccc} \star & \times & 0 \\ \times & \star & 0 \\ 0 & 0 & \star \end{array}\right)$	Tr = g + b + d $det = -gc^{2} + gbd$ $\chi = c^{2} - gb$ -gd - bd	$\begin{aligned} \mathrm{Tr} &= g + b + d \\ \mathrm{det} &= -g c ^2 - gbd \\ \chi &= c ^2 - gb \\ -gd - bd \end{aligned}$

This classification reduces the number of non-singular matrices, from thirty-three to only eleven sets of matrices, or equivalence classes.

Félix González Canales Instituto de Física UNAM

Possible texture zeros for mass matrices of the quarks and lep

(日本) (日本) (日本)

In our case, with a normal hierachy in the eigenvalues,

 $m_{i1} < m_{i2} < m_{i3}$, with $i = u, d, l, \nu$.

Also $m_{i2} = -|m_{i2}|$ and $d_i \equiv 1 - \delta_i$. $0 < \delta < 1 - \widetilde{m}_1$.

In our case, with a normal hierachy in the eigenvalues,

$$m_{i1} < m_{i2} < m_{i3}$$
, with $i = u, d, l, \nu$.

Also $m_{i2} = -|m_{i2}|$ and $d_i \equiv 1 - \delta_i$. $0 < \delta < 1 - \tilde{m}_1$. The orthogonal real matrix is;

$$\mathbb{O} = \begin{pmatrix} \left[\frac{\tilde{m}_{i2}f_{i1}}{\mathcal{D}_{i1}}\right]^{\frac{1}{2}} & -\left[\frac{\tilde{m}_{i1}f_{i2}}{\mathcal{D}_{i2}}\right]^{\frac{1}{2}} & \left[\frac{\tilde{m}_{i1}\tilde{m}_{i2}\delta_{i}}{\mathcal{D}_{i3}}\right]^{\frac{1}{2}} \\ \left[\frac{\tilde{m}_{i1}(1-\delta_{i})f_{i1}}{\mathcal{D}_{i1}}\right]^{\frac{1}{2}} & \left[\frac{\tilde{m}_{i2}(1-\delta_{i})f_{i2}}{\mathcal{D}_{i2}}\right]^{\frac{1}{2}} & \left[\frac{(1-\delta_{i})\delta_{i}}{\mathcal{D}_{i3}}\right]^{\frac{1}{2}} \\ -\left[\frac{\tilde{m}_{i1}f_{i2}\delta_{i}}{\mathcal{D}_{i1}}\right]^{\frac{1}{2}} & -\left[\frac{\tilde{m}_{i2}f_{11}\delta_{i}}{\mathcal{D}_{i2}}\right]^{\frac{1}{2}} & \left[\frac{f_{i1}f_{i2}}{\mathcal{D}_{i3}}\right]^{\frac{1}{2}} \end{pmatrix}$$

Félix González Canales Instituto de Física UNAM

< □ > < ঐ > < ই > < ই > ই পি Q ↔
Possible texture zeros for mass matrices of the quarks and lep

In our case, with a normal hierachy in the eigenvalues,

$$m_{i1} < m_{i2} < m_{i3}$$
, with $i = u, d, l, \nu$.

Also $m_{i2} = -|m_{i2}|$ and $d_i \equiv 1 - \delta_i$. $0 < \delta < 1 - \widetilde{m}_1$. The orthogonal real matrix is;

$$\mathbb{O} = \begin{pmatrix} \left[\frac{\tilde{m}_{i2}f_{i1}}{D_{i1}}\right]^{\frac{1}{2}} & -\left[\frac{\tilde{m}_{i1}f_{i2}}{D_{i2}}\right]^{\frac{1}{2}} & \left[\frac{\tilde{m}_{i1}\tilde{m}_{i2}\delta_{i}}{D_{i3}}\right]^{\frac{1}{2}} \\ \left[\frac{\tilde{m}_{i1}(1-\delta_{i})f_{i1}}{D_{i1}}\right]^{\frac{1}{2}} & \left[\frac{\tilde{m}_{i2}(1-\delta_{i})f_{i2}}{D_{i2}}\right]^{\frac{1}{2}} & \left[\frac{(1-\delta_{i})\delta_{i}}{D_{i3}}\right]^{\frac{1}{2}} \\ -\left[\frac{\tilde{m}_{i1}f_{i2}\delta_{i}}{D_{i1}}\right]^{\frac{1}{2}} & -\left[\frac{\tilde{m}_{i2}f_{i1}\delta_{i}}{D_{i2}}\right]^{\frac{1}{2}} & \left[\frac{f_{i1}f_{i2}}{D_{i3}}\right]^{\frac{1}{2}} \end{pmatrix} \begin{pmatrix} \tilde{m}_{i1} = (1-\tilde{m}_{i1}-\delta_{i}), \\ f_{i2} = (1+\tilde{m}_{i2}-\delta_{i}). \end{pmatrix}$$

$$\begin{array}{l} D_{i1} = (1 - \delta_i)(\widetilde{m}_{i1} + \widetilde{m}_{i2})(1 - \widetilde{m}_{i1}), \\ D_{i2} = (1 - \delta_i)(\widetilde{m}_{i1} + \widetilde{m}_{i2})(1 + \widetilde{m}_{i2}), \\ D_{i3} = (1 - \delta_i)(1 - \widetilde{m}_{i1})(1 + \widetilde{m}_{i2}) \end{array}$$

Mixing Matrices

۲

Mixing Matrix for Quarks

 $V_{CKM} = U_u U_d^{\dagger} = \mathbf{O}_u^{T} P^{(u-d)} \mathbf{O}_d,$ where $P^{(u-d)} = \text{diag} [1, e^{i\phi}, e^{i\phi}]$ with $\phi = \phi_u - \phi_d$

• The Jarlskog invariant is

$$J_q = \Im m \left[V_{us} V_{cs}^* V_{ub}^* V_{cb} \right],$$

• The inner angles of the unitarity triangle are

$$\alpha \equiv \arg\left(-\frac{V_{td} V_{tb}^*}{V_{ud} V_{ub}^*}\right), \quad \beta \equiv \arg\left(-\frac{V_{cd} V_{cb}^*}{V_{td} V_{tb}^*}\right), \quad \gamma \equiv \arg\left(-\frac{V_{ud} V_{ub}^*}{V_{cd} V_{cb}^*}\right).$$

Félix González Canales Instituto de Física UNAM

Mixing Matrix V_{CKM}

The allowed ranges of the magnitudes of all nine CKM elements are¹:

 $\left(\begin{array}{ccc} 0.97419 \pm 0.00022 & 0.2257 \pm 0.0010 & 0.00359 \pm 0.00016 \\ 0.2256 \pm 0.0010 & 0.97334 \pm 0.00023 & 0.0415^{+0.0010}_{-0.0011} \\ 0.00874^{+0.00026}_{-0.00037} & 0.0407 \pm 0.0010 & 0.999133^{+0.000044}_{-0.000044} \end{array} \right)$

¹A. Ceccucci, et. al. (PDG) Phys.Lett.B667:1,2008 → (→ (≥) (≥) (≥) (⇒ (≥) (≥

Mixing Matrix V_{CKM}

The allowed ranges of the magnitudes of all nine CKM elements are¹:

 $\left(\begin{array}{cccc} 0.97419\pm 0.00022 & 0.2257\pm 0.0010 & 0.00359\pm 0.00016 \\ 0.2256\pm 0.0010 & 0.97334\pm 0.00023 & 0.0415^{+0.0010}_{-0.0011} \\ 0.00874^{+0.00026}_{-0.00037} & 0.0407\pm 0.0010 & 0.999133^{+0.000044}_{-0.000043} \end{array}\right)$

The Jarlskog invariant :

 $J_q = (3.05^{+0.19}_{-0.20}) \times 10^{-5}.$

The three angles of the unitary triangle values are:

$$\alpha = (88^{+6}_{-5})^{o}, \quad \beta = (21.46 \pm 0.71)^{o}, \quad \gamma = (77^{+30}_{-32})^{o}.$$

The χ^2 fit

With the following numerical values of quark mass ratio,

$$\begin{split} \widetilde{m}_u &= 2.5469 \times 10^{-5}, \quad \widetilde{m}_c &= 3.9918 \times 10^{-3}, \\ \widetilde{m}_d &= 1.5261 \times 10^{-3}, \quad \widetilde{m}_s &= 3.2319 \times 10^{-2}, \end{split}$$

The resulting best values of the parameters δ_u and δ_d , at 90% are:

$$\delta_u = (5.255^{+8.74}_{-3.53}) \times 10^{-3}, \quad \delta_d = (9.904^{+50.1}_{-9.89}) \times 10^{-4}.$$

the Dirac CP violating phase is $(\phi = 89.86^{+0.28}_{-0.30})^{\circ}$. The best values for the moduli of the entries of the *CKM* mixing matrix are given in the following expression

$$\left| V_{\rm CKM}^{\rm th} \right|_{90\%} = \left(\begin{array}{ccc} 0.97425^{+0.00012}_{-0.00006} & 0.2253 \pm 0.0004 & 0.00334^{+0.0009}_{-0.00006} \\ 0.2252^{+0.0005}_{-0.0004} & 0.97344^{+0.00010}_{-0.00009} & 0.0413^{+0.0013}_{-0.0014} \\ 0.00858^{+0.00025}_{-0.00029} & 0.0405^{+0.00066}_{-0.00067} & 0.999143^{+0.00027}_{-0.000027} \end{array} \right)$$

Félix González Canales Instituto de Física UNAM

Inner angles of the unitary triangle

$$\alpha^{^{th}} = \left(92.46^{+5.29}_{-3.52}
ight)^{o}, \quad \beta^{^{th}} = \left(20.41^{+0.16}_{-0.13}
ight)^{o}, \quad \gamma^{^{th}} = \left(68.33^{+3.74}_{-5.57}
ight)^{o}.$$

The Jarlskog invariant takes the value

$$J_q^{th} = (2.77 \pm 0.10) \times 10^{-5}.$$

All these results are in good agreement with the experimental values. The minimun value of χ^2 obtained in this fit is $\chi^2_{min} = 0.974$ and the resulting value of χ^2 for degree of freedom is $\frac{\chi^2_{min}}{d.o.f.} = 0.162$.

イロト イポト イヨト イヨト 二日

Félix González Canales Instituto de Física UNAM

Possible texture zeros for mass matrices of the quarks and lep

Э

Conclusions

・ロト ・回ト ・ヨト ・ヨト

E

• The lepton mixing matrix U_{PMNS}

$$U_{PMNS}^{th} = \mathbf{O}_{I}^{T} P^{(\nu-I)} \mathbf{O}_{\nu} K,$$

The matrix $P^{(\nu-I)} = \text{diag} \left[1, e^{i\Phi_1}, e^{i\Phi_2}\right]$ is the diagonal matrix of the Dirac phases, with $\Phi_1 = 2\varphi - \phi_I$ and $\Phi_2 = \varphi - \phi_I$.

• The rephasing invariant related to the Dirac phase, analogous to the Jarlskog invariant in the quark sector, is given as:

$$J_{I} \equiv \Im m \left[U_{e1}^{*} U_{\mu3}^{*} U_{e3} U_{\mu1} \right],$$

イロト イポト イヨト イヨト

- For mixing angles
 - $$\begin{split} \theta_{12}^{I} &= 34.5^{\circ} \pm 1.4^{\circ} \left(\begin{smallmatrix} +4.8 \\ -4.0 \end{smallmatrix} \right)^{\circ}, \\ \theta_{23}^{I} &= 42.3^{\circ} \begin{smallmatrix} +5.1 \\ -7.7 \end{smallmatrix} \left(\begin{smallmatrix} +11.3 \\ -7.7 \end{smallmatrix} \right)^{\circ}, \\ \theta_{13}^{I} &= 0.0^{\circ} \begin{smallmatrix} +7.9 \\ -0.0 \end{smallmatrix} \left(\begin{smallmatrix} +12.9 \\ -0.0 \end{smallmatrix} \right)^{\circ}, \\ \delta_{CR} &\in [0^{\circ}, \ 360^{\circ}]. \end{split}$$
- The magnitude of the elements of the complete matrix $U_{\rm PMNS}$, at 90% CL:

 $\left(\begin{array}{cccc} 0.80 \rightarrow 0.84 & 0.53 \rightarrow 0.60 & 0.0 \rightarrow 0.17 \\ 0.29 \rightarrow 0.52 & 0.51 \rightarrow 0.69 & 0.61 \rightarrow 0.76 \\ 0.26 \rightarrow 0.50 & 0.46 \rightarrow 0.66 & 0.64 \rightarrow 0.79 \end{array}\right)$

The χ^2 fit

The charged lepton masses;

 $m_e = 0.510998910 \; {\rm MeV}, \qquad m_\mu = 105.658367 \; {\rm MeV}, \qquad m_\tau = 1776.82 \; {\rm MeV}.$

and

$$\widetilde{m}_{
u_1} = \sqrt{1 - rac{\left(\Delta m_{32}^2 + \Delta m_{21}^2
ight)}{m_{
u_3}^2}}, \ \widetilde{m}_{
u_2} = \sqrt{1 - rac{\Delta m_{32}^2}{m_{
u_3}^2}}.$$

The best values for the neutrino masses, at 90% CL:

$$m_{\nu_3} = \left(4.92^{+0.21}_{-0.22}
ight) imes 10^{-2} \mathrm{eV}.$$

 $m_{\nu_1} = (3.22^{+0.67}_{-0.39}) \times 10^{-3} \mathrm{eV}, \quad m_{\nu_2} = (9.10^{+0.25}_{-0.13}) \times 10^{-3} \mathrm{eV},$

The χ^2 fit

The charged lepton masses;

 $m_e = 0.510998910 \; {\rm MeV}, \qquad m_\mu = 105.658367 \; {\rm MeV}, \qquad m_\tau = 1776.82 \; {\rm MeV}.$

and

$$\widetilde{m}_{
u_1} = \sqrt{1 - rac{\left(\Delta m_{32}^2 + \Delta m_{21}^2
ight)}{m_{
u_3}^2}}, \ \widetilde{m}_{
u_2} = \sqrt{1 - rac{\Delta m_{32}^2}{m_{
u_3}^2}}.$$

The best values for the neutrino masses, at 90% CL:

$$m_{\nu_3} = \left(4.92^{+0.21}_{-0.22}
ight) imes 10^{-2} \mathrm{eV}.$$

 $m_{\nu_1} = (3.22^{+0.67}_{-0.39}) \times 10^{-3} \text{eV}, \quad m_{\nu_2} = (9.10^{+0.25}_{-0.13}) \times 10^{-3} \text{eV},$ The resulting best values of the parameters δ_I and δ_{ν} are

$$\delta_l = (3 \pm 2.98) \times 10^{-2}, \qquad \delta_{\nu} = 0.510^{+0.09}_{-0.12}$$

イロト イポト イヨト

The best values of the Dirac CP violating phases are

 $\Phi_1 = 270^{\circ} \pm 20^{\circ}$. y $\Phi_2 = 180^{\circ} \pm 20^{\circ}$

The best values for the moduli of the entries of the *PMNS* mixing matrix are given in the following expression

$$\left| U_{_{PMNS}}^{^{th}} \right|_{90\%} = \left(\begin{array}{ccc} 0.8204^{+0.008}_{-0.010} & 0.5616^{+0.012}_{-0.014} & 0.1181^{+0.017}_{-0.011} \\ 0.3748^{+0.018}_{-0.031} & 0.6280^{+0.019}_{-0.010} & 0.6819 \pm 0.025 \\ 0.4345^{+0.024}_{-0.020} & 0.5388^{+0.022}_{-0.024} & 0.7216^{+0.024}_{-0.027} \end{array} \right).$$

The best values of the Dirac CP violating phases are

$$\Phi_1 = 270^\circ \pm 20^\circ$$
. y $\Phi_2 = 180^\circ \pm 20^\circ$

The best values for the moduli of the entries of the *PMNS* mixing matrix are given in the following expression

$$\left| U_{_{PMNS}}^{^{th}} \right|_{90\%} = \left(\begin{array}{cccc} 0.8204^{+0.008}_{-0.010} & 0.5616^{+0.012}_{-0.014} & 0.1181^{+0.017}_{-0.011} \\ 0.3748^{+0.018}_{-0.031} & 0.6280^{+0.019}_{-0.010} & 0.6819 \pm 0.025 \\ 0.4345^{+0.024}_{-0.020} & 0.5388^{+0.022}_{-0.024} & 0.7216^{+0.024}_{-0.027} \end{array} \right).$$

The value of the rephasing invariant related to the Dirac phase is

$$J_I^{th} = (1.2 - 2.4) \times 10^{-2}.$$

イロト イポト イヨト イヨト

Motivations

From the Experimental Data of Neutrino Oscillations Universal Form For Mass Matrices

Mixing Matrices

The effective Majorana masses Conclusions

Félix González Canales Instituto de Física UNAM

Motivations

From the Experimental Data of Neutrino Oscillations Universal Form For Mass Matrices

Mixing Matrices

The effective Majorana masses Conclusions

Allowed parameter region. Red at 90% CL. Green at 95% CL.

Félix González Canales Instituto de Física UNAM

Allowed parameter region. Red at 90% CL. Green at 95% CL.

イロト イヨト イヨト Possible texture zeros for mass matrices of the quarks and lep

 Mixing Angles θ^q₁₂. Red at 90% CL. Green at 95% CL.

 $\sin^2\theta_{12}^q\approx \frac{\frac{\widetilde{m}_d}{\widetilde{m}_s}+\frac{\widetilde{m}_u}{\widetilde{m}_c}-2\sqrt{\frac{\widetilde{m}_u}{\widetilde{m}_c}\frac{\widetilde{m}_d}{\widetilde{m}_s}}\cos\phi}{\left(1+\frac{\widetilde{m}_u}{\widetilde{m}_c}\right)\left(1+\frac{\widetilde{m}_d}{\widetilde{m}_s}\right)},$

 $\theta_{12}^q = 13.02^\circ \pm 0.03^\circ,$

< □ > < ঐ > < ই > < ই > ই পি Q ↔
Possible texture zeros for mass matrices of the quarks and lep

• Mixing Angles θ_{23}^q . Red at 90% CL. Green at 95% CL.

$$\sin^2\theta_{23}^q\approx \frac{\left(\sqrt{\delta_u}-\sqrt{\delta_d}\right)^2}{\left(1+\frac{\widetilde{m}_u}{\widetilde{m}_c}\right)},$$

 $\theta_{23}^q = (2.36^{+0.04}_{-0.03})^\circ$,

イロト イヨト イヨト イヨト Possible texture zeros for mass matrices of the quarks and lep

• Mixing Angles θ_{23}^q . Red at 90% CL. Green at 95% CL.

 $\sin^2 \theta_{13}^q \approx \frac{\frac{\tilde{m}_u}{\tilde{m}_c} \left(\sqrt{\delta_u} - \sqrt{\delta_d}\right)^2}{\left(1 + \frac{\tilde{m}_u}{\tilde{\varpi}}\right)}.$

 $\theta_{13}^q = 0.19^\circ \pm 0.03^\circ,$

Félix González Canales Instituto de Física UNAM

・ロト ・回ト ・ヨト ・ヨト Possible texture zeros for mass matrices of the quarks and lep

Mixing angles for lepton sector

$$\begin{split} \sin^2 \theta_{12}^{\prime} &= \frac{f_{\nu 2}}{\left(1 + \widetilde{m}_{\nu_2}\right)\left(1 - \delta_{\nu}\right)} \left\{ \frac{\frac{\widetilde{m}_{\nu_1}}{\widetilde{m}_{\nu_2}} + \frac{\widetilde{m}_e}{\widetilde{m}_{\mu}}\left(1 - \delta_{\nu}\right) + 2\sqrt{\frac{\widetilde{m}_{\nu_1}}{\widetilde{m}_{\nu_2}}\frac{\widetilde{m}_e}{\widetilde{m}_{\mu}}\left(1 - \delta_{\nu}\right)} \cos \phi_1}{\left(1 + \frac{\widetilde{m}_{\nu_1}}{\widetilde{m}_{\nu_2}}\right)\left(1 + \frac{\widetilde{m}_e}{\widetilde{m}_{\mu}}\right)} \right\},\\ \sin^2 \theta_{23}^{\prime} &\approx \frac{\delta_{\nu} + \delta_e f_{\nu 2} - \sqrt{\delta_{\nu} \delta_e f_{\nu 2}} \cos\left(\phi_1 - \phi_2\right)}{\left(1 + \frac{\widetilde{m}_e}{\widetilde{m}_{\mu}}\right)\left(1 + \widetilde{m}_{\nu_2}\right)},\\ \sin^2 \theta_{13}^{\prime} &\approx \frac{\delta_{\nu}}{\left(1 + \frac{\widetilde{m}_e}{\widetilde{m}_{\mu}}\right)\left(1 + \widetilde{m}_{\nu_2}\right)} \left\{\frac{\widetilde{m}_e}{\widetilde{m}_{\mu}} + \frac{\widetilde{m}_{\nu_1} \widetilde{m}_{\nu_2}}{\left(1 - \delta_{\nu}\right)} - 2\sqrt{\frac{\widetilde{m}_e}{\widetilde{m}_{\mu}}}\frac{\widetilde{m}_{\nu_1} \widetilde{m}_{\nu_2}}{\left(1 - \delta_{\nu}\right)} \cos \phi_1}\right\},\end{split}$$

Félix González Canales Instituto de Física UNAM

・ロト ・回ト ・ヨト ・ヨト Possible texture zeros for mass matrices of the quarks and lep

E

Mixing angles for lepton sector

$$\sin^2 \theta_{12}^{\prime} = \frac{f_{\nu 2}}{\left(1 + \widetilde{m}_{\nu_2}\right)\left(1 - \delta_{\nu}\right)} \left\{ \begin{aligned} &\frac{\frac{\widetilde{m}_{\nu_1}}{\widetilde{m}_{\nu_2}} + \frac{\widetilde{m}_e}{\widetilde{m}_{\mu}}\left(1 - \delta_{\nu}\right) + 2\sqrt{\frac{\widetilde{m}_{\nu_1}}{\widetilde{m}_{\nu_2}}\frac{\widetilde{m}_e}{\widetilde{m}_{\mu}}\left(1 - \delta_{\nu}\right)} \cos \phi_1 \\ &\left(1 + \frac{\widetilde{m}_{\nu_1}}{\widetilde{m}_{\nu_2}}\right)\left(1 + \frac{\widetilde{m}_e}{\widetilde{m}_{\mu}}\right) \\ &\sin^2 \theta_{23}^{\prime} \approx \frac{\delta_{\nu} + \delta_e f_{\nu 2} - \sqrt{\delta_{\nu} \delta_e f_{\nu 2}} \cos \left(\phi_1 - \phi_2\right)}{\left(1 + \frac{\widetilde{m}_e}{\widetilde{m}_{\mu}}\right)\left(1 + \widetilde{m}_{\nu_2}\right)}, \\ &\sin^2 \theta_{13}^{\prime} \approx \frac{\delta_{\nu}}{\left(1 + \frac{\widetilde{m}_e}{\widetilde{m}_{\mu}}\right)\left(1 + \widetilde{m}_{\nu_2}\right)} \left\{\frac{\widetilde{m}_e}{\widetilde{m}_{\mu}} + \frac{\widetilde{m}_{\nu_1} \widetilde{m}_{\nu_2}}{\left(1 - \delta_{\nu}\right)} - 2\sqrt{\frac{\widetilde{m}_e}{\widetilde{m}_{\mu}}\frac{\widetilde{m}_{\nu_1} \widetilde{m}_{\nu_2}}{\left(1 - \delta_{\nu}\right)} \cos \phi_1}\right\}, \end{aligned}$$

We obtain the following numerical values

$$\theta_{12}^{\prime} = 34.3^{\circ}, \quad \theta_{23}^{\prime} = 43.6^{\circ}, \quad \theta_{13}^{\prime} = 3.4^{\circ}$$

in very good agreement with experimental data

Félix González Canales Instituto de Física UNAM

The strong mass hierarchy of the Dirac fermions produces small and very small mass ratios of u and d-type quarks and charged leptons. The quark mass hierarchy is then reflected in a similar hierarchy of small and very small quark mixing angles.

- The strong mass hierarchy of the Dirac fermions produces small and very small mass ratios of u and d-type quarks and charged leptons. The quark mass hierarchy is then reflected in a similar hierarchy of small and very small quark mixing angles.
- ² The normal seesaw mechanism gives very small masses to the left handed Majorana neutrinos with relatively large values of the neutrino mass ratio m_{ν_1}/m_{ν_2} and allows for large θ_{12}^l and θ_{23}^l mixing angles.

イロト イポト イヨト イヨト 二日

The effective Majorana masses

The square of the magnitudes of the effective Majorana neutrino masses are

$$|\langle m_{ll} \rangle|^{2} = \sum_{j=1}^{3} m_{\nu_{j}}^{2} |U_{lj}|^{4} + 2 \sum_{j < k}^{3} m_{\nu_{j}} m_{\nu_{k}} |U_{lj}|^{2} |U_{lk}|^{2} \cos 2 (w_{lj} - w_{lk}),$$

where $w_{lj} = \arg \{U_{lj}\}$, with $l = e, \mu, \tau$; this term includes phases of both types, Dirac and Majorana.

The effective Majorana masses

The square of the magnitudes of the effective Majorana neutrino masses are

$$|\langle m_{ll} \rangle|^{2} = \sum_{j=1}^{3} m_{\nu_{j}}^{2} |U_{lj}|^{4} + 2 \sum_{j < k}^{3} m_{\nu_{j}} m_{\nu_{k}} |U_{lj}|^{2} |U_{lk}|^{2} \cos 2 (w_{lj} - w_{lk}),$$

where $w_{lj} = \arg \{U_{lj}\}$, with $l = e, \mu, \tau$; this term includes phases of both types, Dirac and Majorana.

$$\begin{split} |\langle m_{ee} \rangle|^2 &\approx \{9.41 + 8.29 \cos(1^\circ - 2\beta_1) + 4.3 \cos(1^\circ - 2w_{e3}) \\ + 4.31 \cos 2(\beta_1 - w_{e3})\} \times 10^{-6} \text{ eV}^2 \end{split}$$

where $w_{e3} = \arctan\left\{\frac{0.15 \tan \beta_2 - 0.013}{0.15 + 0.013 \tan \beta_2}\right\}$.

Similarly,

$$|\langle m_{\mu\mu} \rangle|^2 \approx \{4.8 + 0.17 \cos 2(44^o - w_{\mu2}) + 1.8 \cos 2(w_{\mu2} - w_{\mu3})\} \times 10^{-4} \text{ eV}^2$$

where

$$w_{\mu 2} \approx \arctan\left\{\frac{0.65 \tan\beta_1 + 0.13}{0.65 - 0.13 \tan\beta_1}\right\}, \quad w_{\mu 3} \approx \arctan\left\{\frac{\tan\beta_2 - 0.13}{1 + 0.13 \tan\beta_2}\right\}.$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○

E

Similarly,

 $|\langle m_{\mu\mu} \rangle|^2 \approx \{4.8 + 0.17 \cos 2(44^o - w_{\mu2}) + 1.8 \cos 2(w_{\mu2} - w_{\mu3})\} \times 10^{-4} \text{ eV}^2$ where

$$w_{\mu 2} pprox \arctan\left\{rac{0.65 an eta_1 + 0.13}{0.65 - 0.13 an eta_1}
ight\}, \quad w_{\mu 3} pprox \arctan\left\{rac{ an eta_2 - 0.13}{1 + 0.13 an eta_2}
ight\}.$$

Therefore in order to make an estimate we maximize the effective Majorana neutrino masses, we obtained

$$|\langle m_{ee}
angle|^{
m max} pprox 4.6 imes 10^{-3} {
m eV}, \qquad |\langle m_{\mu\mu}
angle|^{
m max} pprox 2.1 imes 10^{-2} {
m eV}.$$

These numerical values are consistent with the vary small experimentally determined upper bounds for the reactor neutrino mixing angle θ_{13}^l .

イロト イポト イヨト

Equivalence Classes for matrices with two texture zeros.

Class	Textures		
Π	$\left(\begin{array}{ccc} 0 & \times & \times \\ \times & \star & 0 \\ \times & 0 & \star \end{array}\right) \left(\begin{array}{ccc} \star & \times & 0 \\ \times & 0 & \times \\ 0 & \times & \star \end{array}\right) \left(\begin{array}{ccc} \star & 0 & \times \\ 0 & \star & \times \\ \times & \times & 0 \end{array}\right)$		
III	$\left(\begin{array}{ccc} 0 & \times & \times \\ \times & 0 & \times \\ \times & \times & \star \end{array}\right) \left(\begin{array}{ccc} 0 & \times & \times \\ \times & \star & \times \\ \times & \times & 0 \end{array}\right) \left(\begin{array}{ccc} \star & \times & \times \\ \times & 0 & \times \\ \times & \times & 0 \end{array}\right)$		
IV	$\left(\begin{array}{ccc} \star & 0 & 0 \\ 0 & \star & \times \\ 0 & \times & \star \end{array}\right) \left(\begin{array}{ccc} \star & 0 & \times \\ 0 & \star & 0 \\ \times & 0 & \star \end{array}\right) \left(\begin{array}{ccc} \star & \times & 0 \\ \times & \star & 0 \\ 0 & 0 & \star \end{array}\right)$		

Class II

- $m_{
 u} \geq 0.01$ eV,
- $|\langle m_{ee}
 angle| \geq 0.02~{
 m eV}$
- Class III
 - $0.01 \geq m_{
 u} \geq {f eV}$, $|\langle m_{ee}
 angle| \geq 0.02 \,\, {f eV}$
- Class IV is not viable phenomenologically.

・ロト ・回ト ・ヨト ・ヨト … ヨ

Conclusions

- The strong hierarchy in the mass spectra of the quarks and charged leptons explains the small or very small quark mixing angles, the very small charged lepton mass ratio explain the very small θ_{13}^l which, in our scheme, is independent of the neutrino masses.
- The see-saw mechanism type I gives very small masses to the left handed Majorana neutrinos with relatively large values of the neutrino mass ratio m_{ν_1}/m_{ν_2} and allows for large θ_{12}^l and θ_{23}^l mixing angles.

イロト 不得 トイラト イラト ニラー

- We obtain the analytical expresion for mixing angles, mixing matrices, invariant associated at CP violation phases and for the effective Majorana masses.
- We can reproduce the numerical values of both mixing matrices, $V_{\rm CKM}$ and $U_{\rm PMNS}$, in very good agreement with experimental data.
- We have then classified the matrix with two texture zero. Also we analysed for lepton sector was obtained that only the matrices with two zeros class I,II, III are viable phenomenologically.

イロト イポト イヨト イヨト