Ultra-high energy extragalactic neutrinos interacting with ultra-light dark matter

XIII Mexican Workshop on Particles and Fields

October 20-26, 2011 León, Guanajuato

Célio A. Moura Universidade Federal do ABC - Brazil

UHE Cosmic Rays' Origin

Topological _____ Defects

Active Galactic Nuclei; Gamma Ray Bursts Super massive particles decay

First order Fermi mechanism

E < eZBR

 $\theta \sim eZBD/E$

Acceleration Mechanisms

$$\frac{\langle \Delta E \rangle}{E} \sim \beta^2$$

 $\frac{\langle \Delta E \rangle}{E} \sim \beta$

Mecanismo (original) de aceleração de Fermi (de segunda ordem).

Mecanismo de aceleração de Fermi de primeira ordem.

Neutrinos and Cosmic Rays

UHE Neutrinos production mechanism

- Very small mass limits;
- Very small magnetic moment limits;
- In principle, they propagate through cosmological distances with very little energy loss and deflection.

Flavor Ratios

Charged current neutrino interaction with nucleons

Down-going neutrino channels at Auger top of atmosphere

Prediction of Double Bang events in the atmosphere

See: M. M. Guzzo and C. A. Moura, Astropart. Phys. 25, 277 (2006) [arXiv:hep-ph/0504270].

Skimming Tau Neutrinos

Other experimental possibilities

- None extragalactic neutrino have been detected yet;
- Auger extensions:
 - HEAT: High Elevation Telescopes;
 - AMIGA: Muons and Infill for the Ground Array.
- JEM-EUSO: 50 to 200 Auger aperture;
- IceCube; ANTARES, NEMO, NESTOR: KM3NeT

Extragalactic UHE Neutrino Flux Limits

Neutrinos and Composition

• What happens with neutrino flux if UHE cosmic rays are not protons?

- Ratio mass / luminosity:
 - M/L (stars) close to the sun: ~0.7 M_{\odot}/L_{\odot}
 - Oort's limit (1932) for galaxies: ~ 3 M_{\odot}/L_{\odot}
 - Coma cluster M/L ~ 300 M_☉/L_☉: Astronomer Fritz Zwicky 1933
- Coma Cluster:
 - Masa total = $1.6 \times 10^{15} \text{ M}_{\odot}$
 - Masa en rayos-X = 0.96 x 10^{14} M $_{\odot}$

- Faber & Gallagher (1979)
 - M/L in galaxy clusters~ 80-400 M_{\odot}/L_{\odot}
- Confirmation via gravitational lancing
 - ~ 5% optically visible (stars)
 - ~ 15% X-rays (plasmas)
 - ~ 80% DM-DE

- Galaxy rotation curves:
 - M31: Babcock (1939)
 - M31: Roberts & Whitehurst (1975)
 - Various galaxies: Rubin, Thonnard & Ford (1978)

Rubin, Thonnard & Ford ApJL (1978)

- Lambda Cold Dark Matter (ΛCDM) model explains very well:
 - CMBR;
 - Large scale structure formation;
 - Universe expansion.

The Bullet Custer

The energy distribution in the Universe

Dark Matter distribution

Credit: B. Moore See www.nbody.net

What would be the DM?

- Weak interacting particles
 - Neutralinos, gravitinos, axinos?
 - Micro BH?
 - Scalar Fields (including very (ultra) light ones)?
 - Et cetera...
- Laws of gravitation not well understood:
 - MOND (Milgrom 1983)
 - TeVeS (Bekenstein PRD 2004)
 - STVG (Moffat JCAP 2005)

And if neutrinos interact with DM?

FIG. 2. Several matter power spectra with different opacities Q_2 (top panel) and Q_0 (bottom panel) between dark matter and neutrinos; Q_2 and Q_0 are in units of cm² MeV⁻¹.

And if neutrinos interact with DM?

FIG. 7 (color online). The CMB and matter power spectra, for varying values of m_{ν} , for model B1 (one interacting neutrino and two standard neutrinos). The power spectra are normalized (to an arbitrary value) at large scale.

FIG. 8 (color online). The CMB and matter power spectra, for varying values of m_{ν} , for model B3 (three interacting/annihilating neutrinos). The power spectra are normalized (to an arbitrary value) at large scale.

Neutrino Dark Matter Interaction

Figure 2. Neutrino cross section inducing a 95% neutrino flux suppression, as a function of the DM particle's mass $m_{\rm DM}$. The shaded area shows the suppression parameters' space. We consider a density $\rho_{\rm DM} = 1.2 \times 10^{-6} \,\text{GeV/cm}^3$ and a mean source distance of $L = 100 \,\text{Mpc}$.

Neutrino Dark Matter Interaction

 $\mathcal{L} = g_{\nu\phi}\,\bar{\nu}\,\phi\,P_RF + H.c.$

$$\sigma \simeq \left(rac{g_{
u\phi}}{M_I}
ight)^4 rac{m_\phi E_
u}{16\pi}\,.$$

$$\begin{split} \lambda &= 16\pi \left(\frac{M_I/g_{\nu\phi}}{\text{GeV}}\right)^4 \left(\frac{\text{GeV}}{E_{\nu}}\right) \left(\frac{\text{GeV/cm}^3}{\rho_{\phi}}\right) \text{GeV}^2 \text{cm}^3 \\ &\simeq L_0 \left(\frac{M_I/g_{\nu\phi}}{\text{GeV}}\right)^4 \left(\frac{10^{18}\text{eV}}{E_{\nu}}\right) \left(\frac{\text{GeV/cm}^3}{\rho_{\phi}}\right) \,, \end{split}$$

$$rac{g_{
u\phi}}{M_I}\gtrsim \left[\ln\left(rac{F_0}{F}
ight)rac{L_0}{
ho_\phi E_
u L}
ight]^{rac{1}{4}}$$

Neutrino Dark Matter Interaction

Conclusions

- In spite of all the predictions, an extragalactic flux of UHE neutrinos have not been observed yet;
- In addition, there is a compelling evidence of a nonstandard matter in the universe, i.e., Dark Matter:
 - Neutrino-DM interaction may exist and lead to absorption of neutrino flux for specific kind of DM;
- Despite the neutrino flux limit may be due to the acceleration mechanism, we raise the possibility of a propagation effect.