Near-horizon geometry from flux compactification

Oscar Loaiza Brito, Liliana Vazquez Mercado
DCI-Universidad de Guanajuato XII Mexican Workshop on Particles and Fields

October 24, 2011

Physical Review D 84, 066010(2011)

Outline

* Introduction
* Conditions that flux configuration must fulfill in order to obtain 4d effective theory with $A d S_{2} \times S^{2}$ symmetry
* How are we going to find these conditions?
- Einstein equation and Bianchi identities
- Integrability conditions on the spinors
* What about the internal space?
- Manifold with SU(3) structure
- Null curvature and torsion terms
* Near-horizon geometry of supersymmetric black hole
* Conclusions

Introduction

* The presence of extra dimensions in superstrings theories has established a relation between the physics of theories in 4d and the geometry of the 6d internal space
* An interesting topic concerns the construction of vacua with positive or null curvature
* A common assumption to study these effective 4d theories involves $10 d \longrightarrow 4 d \times 6 d$

Introduction

* Starting point: 10d theory, namely, Type IIB Supergravity
- Features: $N=2$, chiral theory, n -form field strengths with n odd (bosonic content)
* Final point: effective 4d theory whose geometry is given by the product of two maximally symmetric spaces: $A d S_{2} \times S^{2}$
* Find a solution of the 10d theory which satisfy the symmetry $\left(A d S_{2} \times S^{2}\right)$ and the Einstein-Maxwell equations
* This solution is given by the near-horizon geometry of an extremal black hole (RN), called, the Robinson-Bertotti metric

Introduction

* If we consider a fluxless compactification, it is not possible to obtain a De-Sitter vacuum (Minkowski)
* The introduction of fluxes produces important changes (no-go theorem, Maldacena \& Nuñez)
- Minkowski
- Anti-De-Sitter
* For $N=2$, four-dimensional supergravity admits solutions: Minkowski and Robinson-Bertotti

Introduction

* Construction of Robinson-Bertotti metric
* Compactification (with fluxes) of type IIB supergravity to a 4d spacetime conformed by the product $M_{2} \times \tilde{M}_{2}$
(two-dimensional maximally symmetric spaces)
* $10 d \longrightarrow 2 d \times 2 d \times 6 d$

Flux supergravity compactification

Let us start by considering the most generic 10d metric,

$$
d s^{2}=e^{2 A(y)}\left(\tilde{g}_{i j} d x^{i} d x^{j}+\tilde{g}_{a b} d x^{a} d x^{b}\right)+h_{m n} d y^{m} d y^{n}
$$

By the Einstein trace-reversed equations, the Ricci scalar $R\left(\tilde{g}_{i j}\right) \equiv \tilde{R}_{(1)}$ for $A d S_{2}$ satifies
where $T_{M N}$ is the energy-momentum tensor in 10 d .

Flux supergravity compactification

Let us start by considering the most generic 10d metric,

$$
d s^{2}=e^{2 A(y)}\left(\tilde{g}_{i j} d x^{i} d x^{j}+\tilde{g}_{a b} d x^{a} d x^{b}\right)+h_{m n} d y^{m} d y^{n}
$$

By the Einstein trace-reversed equations, the Ricci scalar $R\left(\tilde{g}_{i j}\right) \equiv \tilde{R}_{(1)}$ for $A d S_{2}$ satifies

$$
\tilde{R}_{(1)}+e^{2 A}\left(-T_{i}^{i}+\frac{1}{4} T_{L}^{L}\right)=2 e^{-2 A} \nabla^{2} e^{2 A}
$$

where $T_{M N}$ is the energy-momentum tensor in 10 d .

Flux supergravity compactification

The expression of the energy-momentum tensor for a general n-form is,

$$
\mathcal{T}_{1} \equiv-T_{i}^{i}+\frac{1}{4} T_{L}^{L}=-\mathcal{F}_{i M_{1} \ldots M_{n-1}} \mathcal{F}^{i M_{1} \ldots M_{n-1}}+\frac{n-1}{4 n} \mathcal{F}^{2}
$$

* A similar result is obtained for $\tilde{R}_{(2)}$ and \mathcal{T}_{2} for S^{2}
* It is necessary to consider specific flux configurations in order to preserve a $S O(1,1) \times S O(2)$ symmetry in 4 d :
- Internal fluxes $\mathcal{F}_{n}^{\text {int }}$
- Fluxes with general form $\mathcal{F}_{n}=\omega_{2} \wedge f_{n-2}$

Ricci flat space

Contribution to the 4 d Ricci scalar \tilde{R} by fluxes compatible with $S O(1,1) \times S O(2)$ symmetry

CASE I
$\mathcal{F}_{n}=\omega_{2} \wedge f_{n-2}$ fluxes, with

$$
\begin{gather*}
\omega_{2}=\frac{1}{2} \omega_{i j} d x^{i} \wedge d x^{j} \tag{1}\\
\mathcal{F}_{j L_{1} \ldots L_{n-1}} \mathcal{F}^{j L_{1} \ldots L_{n-1}}=\frac{2}{n} F^{2} \tag{2}
\end{gather*}
$$

From which the corresponding contribution to $\tilde{R}_{(1)}$ by $T_{(1)}$ is

$$
\mathcal{T}_{1}=\frac{n-9}{4 n} \mathcal{F}^{2}
$$

Ricci flat space

CASE II

$G_{n}=\tilde{\omega}_{2} \wedge g_{n-2}$ fluxes, with

$$
\begin{equation*}
\tilde{\omega}_{2}=\frac{1}{2} \omega_{a b} d x^{a} \wedge d x^{b} \tag{3}
\end{equation*}
$$

Where the contribution to $\tilde{R}_{(2)}$ by $\mathcal{T}_{(2)}$ is given by

$$
\mathcal{T}_{2}=\frac{n-9}{4 n} \mathcal{G}_{n}^{2} .
$$

Ricci flat space

Contribution of internal fluxes, \mathcal{F}_{n},

Contribution of fluxes,
$\mathcal{G}_{n}=V_{o l} I_{4} \wedge h_{n-4}$,

$$
\mathcal{T}=\frac{n-1}{2 n} \mathcal{F}_{n}^{2}
$$

Ricci-flat 4d space-time is an allowed solution from 10d supergravity flux compactification into a 4d space-time given by $A d S_{2} \times S^{2}$, since

$$
\tilde{R}=\tilde{R}_{(1)}+\tilde{R}_{(2)}=-e^{2 A}\left(\mathcal{T}_{1}+\mathcal{T}_{2}\right)
$$

Ricci flat space

Contribution of internal fluxes, \mathcal{F}_{n},

Contribution of fluxes, $\mathcal{G}_{n}=V O I_{4} \wedge h_{n-4}$,

$$
\mathcal{T}=\frac{n-1}{2 n} \mathcal{F}_{n}^{2}
$$

$$
\mathcal{T}=-\frac{9-n}{2 n} \mathcal{G}_{n}^{2}
$$

Ricci-flat 4d space-time is an allowed solution from 10d

 supergravity flux compactification into a 4d space-time given by $A d S_{2} \times S^{2}$, since
Ricci flat space

Contribution of internal fluxes, \mathcal{F}_{n},

Contribution of fluxes, $\mathcal{G}_{n}=V_{o l} I_{4} \wedge h_{n-4}$,

$$
\mathcal{T}=\frac{n-1}{2 n} \mathcal{F}_{n}^{2}
$$

$$
\mathcal{T}=-\frac{9-n}{2 n} \mathcal{G}_{n}^{2}
$$

Ricci-flat 4d space-time is an allowed solution from 10d supergravity flux compactification into a 4d space-time given by $A d S_{2} \times S^{2}$, since

$$
\tilde{R}=\tilde{R}_{(1)}+\tilde{R}_{(2)}=-e^{2 A}\left(\mathcal{T}_{1}+\mathcal{T}_{2}\right)
$$

Examples

* We focus on type IIB supergravity compactifications
* Consider a 5-form F_{5} of the form $f_{2} \wedge F_{3}$, with coefficients $F_{i j m n p}$ and $F_{a b m n p}$
* The corresponding 2d scalar curvatures are

$$
\begin{gathered}
\tilde{R}_{(1)}=-\frac{e^{2 A(y)}}{5}\left|F_{5}\right|^{2} \\
\tilde{R}_{(2)}=\frac{e^{2 A(y)}}{5}\left|F_{5}\right|^{2} .
\end{gathered}
$$

Examples

Let us consider the flux configuration consisting on a NS-NS flux H_{3} and a RR flux F_{3} given by

$$
\begin{aligned}
H_{3} & =\left(N d x^{0} \wedge d x^{1}+M d x^{2} \wedge d x^{3}\right) \wedge d \alpha \\
F_{3} & =\left(P d x^{0} \wedge d x^{1}+Q d x^{2} \wedge d x^{3}\right) \wedge d \alpha
\end{aligned}
$$

with α a function of internal coordinates. The curvatures are

$$
\begin{aligned}
& \tilde{R}_{(1)}=-2 e^{2 A(y)}\left(N^{2}+P^{2}\right)(\nabla \alpha)^{2}, \\
& \tilde{R}_{(2)}=2 e^{2 A(y)}\left(M^{2}+Q^{2}\right)(\nabla \alpha)^{2}
\end{aligned}
$$

Taking $M^{2}+Q^{2}=N^{2}+P^{2}$, the total 4d curvature vanishes.

Einstein equations

We start computing the corresponding 2d Ricci tensors. The 10 -dimensional component of the Ricci tensor is,

$$
\begin{equation*}
R_{M N}=-\frac{1}{\operatorname{lm} \tau}\left(\frac{G_{3}^{2}}{48} G_{M N}-\frac{1}{4} G_{M Q R} \bar{G}_{N}^{Q R}\right) \tag{4}
\end{equation*}
$$

where $G_{3}=F_{3}-\tau H_{3}$.
To preserve the symmetries of the compactification setup, the most general metric to consider is

$$
\begin{equation*}
d s^{2}=e^{2 A(y)} \tilde{g}_{i j} d x^{i} d x^{j}+e^{2 B(y)} \tilde{g}_{a b} d x^{a} d x^{b}+e^{-2 A(y)} \tilde{h}_{m n} d y^{m} d y^{n} \tag{5}
\end{equation*}
$$

Einstein equations

Expressions of Ricci Tensor for M_{2} and \tilde{M}_{2}, respectively

$$
\begin{aligned}
R_{i j}(g) & =e^{4 A}\left(\tilde{\nabla}^{2} A+2 \tilde{\nabla} A \cdot \tilde{\nabla} B-2(\tilde{\nabla} A)^{2}\right) \tilde{g}_{i j} \\
& -\frac{1}{\operatorname{lm} \tau}\left(\frac{G_{3}^{2}}{48} G_{i j}-\frac{1}{4} G_{i Q R} \bar{G}_{j}^{Q R}\right) \\
R_{a b}(g) & =e^{2(A+B)}\left(\tilde{\nabla}^{2} B-2 \tilde{\nabla} A \cdot \tilde{\nabla} B+2(\tilde{\nabla} B)^{2}\right) \tilde{g}_{a b} \\
& -\frac{1}{\operatorname{lm} \tau}\left(\frac{G_{3}^{2}}{48} G_{a b}-\frac{1}{4} G_{a Q R} \bar{G}_{b}^{Q R}\right)
\end{aligned}
$$

with $G_{3}=F_{3}-\tau H_{3}$ complex 3-form.

Bianchi Identities

* From dual Bianchi Identities, $d * F_{3}=d * H_{3}=0$, we get

$$
\begin{aligned}
(Q+\tau M)\left(-2 \partial_{m}(2 A+B) \tilde{\partial}^{m} \alpha+\tilde{\partial}^{2} \alpha\right) & =0 \\
(P+\tau N)\left(2 \partial_{m}(-4 A+B) \tilde{\partial}^{m} \alpha+\tilde{\partial}^{2} \alpha\right) & =0
\end{aligned}
$$

* It is worth mentioning that even though M_{2} and \tilde{M}_{2} are independent, it seems that they share the same warping factor
* Both equations reduce to

$$
\tilde{\partial}^{2} \alpha=6 e^{-2 A} \partial_{m} A \partial^{m} \alpha=\frac{3}{2} e^{-6 A}\left(\partial_{m} e^{4 A}\right)\left(\partial^{m} \alpha\right)
$$

Bianchi Identities

* If we compare Ricci tensor $R_{i j}$ with Bianchi Identities, we have, for M_{2}

$$
\begin{aligned}
\tilde{\nabla}^{2}\left(e^{4 A}-\alpha\right) & =2 \tilde{R}_{1}+\frac{1}{2} e^{-6 A}\left(\partial_{m} e^{4 A} \partial^{m} e^{4 A}\right)-\frac{3}{2} \partial_{m} e^{4 A} \partial^{m} \alpha \\
& +\frac{1}{4 \operatorname{Im} \tau}\left[-P^{2}-\tau \tilde{\tau} N^{2}+2(\operatorname{Im} \tau) P N\right] e^{-2 A} \partial_{m} \alpha \partial^{m} \alpha
\end{aligned}
$$

A similar expression is obtained for \tilde{M}_{2}

- If we add both contributions the result is

$$
\begin{aligned}
& \tilde{\nabla}^{2}\left(e^{4 A}-\alpha\right)=e^{-6 A}\left(\partial_{m} e^{4 A} \partial^{m} e^{4 A}\right)-3 \partial_{m} e^{4 A} \partial^{m} \alpha \\
+ & \frac{1}{4 \operatorname{Im} \tau}\left[\left(Q^{2}-P^{2}\right)-\tau \tilde{\tau}\left(M^{2}-N^{2}\right)+2(\operatorname{Im} \tau)(Q M+P N)\right] e^{-2 A} \partial_{m} \alpha \partial^{m} \alpha
\end{aligned}
$$

Bianchi Identities

* Solutions:
- Relation between A, α and flux numbers
- Constant A (R-B metric in 4 d)
* Some cases are $\left(\mathcal{T}=0, M^{2}+Q^{2}=N^{2}+P^{2}\right)$:
- $(M, N, P, Q) \neq 0$ y $M=-Q, Q=P$
- $P=0$ and $\frac{M}{Q}=\frac{\tau \bar{\tau}-1}{2 l m \tau}$
- $Q=0$ and $\frac{N}{P}=\frac{\tau \bar{\tau}+1}{2 l m \tau}$
- $N=0$ and $\frac{Q}{M}=\frac{\tau \bar{\tau}-1}{2 l m \tau}$
- $M=0$ and $\frac{P}{N}=\frac{\tau \bar{\tau}+1}{2 l m \tau}$
* For the above expressions, $H_{3} \wedge F_{3}=0$

Up to now, what have we done?

* RB metric $(\mathrm{R}=0)$ in 4 d spacetime
* We turned on fluxes which satify the condition of null curvature, H_{3} and F_{3} with $M^{2}+Q^{2}=N^{2}+P^{2}$
* We computed the 2d Ricci tensors
* We verified that the flux configuration is compatible with Einstein equations and Bianchi identities
* Finally, we concentrated on the simplest solution involvin a constant warping factor A, because our goal is to find the minimal conditions under which we can construct the RB solution in 4d

Curvature from integrability conditions

* By choosing one of the above constraints, let us proceed to compute the scalar curvature of the 2 d spaces from the integrability conditions on the 2 d components of 10 d spinors
* When supersymmetry is preserved, variation of the gravitino is

$$
\delta \Psi_{M}=\nabla_{M} \epsilon-\frac{1}{4} H_{M} \sigma^{3} \epsilon+\frac{1}{16} e^{\phi} H_{3} \Gamma_{M} \sigma^{1} \epsilon=0
$$

where σ are Pauli matrices and $\epsilon=\binom{\epsilon_{1}}{\epsilon_{2}}$

Curvature from integrability conditions

It is desirable to find an independent expression for 10 d spinors ϵ^{1} and ϵ^{2}.

Dilatino variation

Curvature from integrability conditions

It is desirable to find an independent expression for 10 d spinors ϵ^{1} and ϵ^{2}.

We start by taking the 4d component of $\delta \Psi$

* $\left[\Gamma_{i}, \Gamma_{j k m}\right]=\left\{\Gamma_{i}, \Gamma_{a b m}\right\}=0$
* M_{2} component of gravitino variation

$$
\begin{aligned}
& \nabla_{i} \epsilon-\frac{1}{4} H_{i} \sigma^{3} \epsilon-\frac{1}{16} e^{\phi} \Gamma_{i}\left(\not \mathscr{F}_{3}^{(1)}-\not F_{3}^{(2)}\right) \sigma^{1} \epsilon=0, \\
& \mathscr{F}_{3}^{(1)}=F^{01 m} \Gamma_{01 m} \\
& \mathscr{F}_{3}^{(2)}=F^{23 m} \Gamma_{23 m}
\end{aligned}
$$

* Dilatino variation

$$
\delta \lambda=-\frac{1}{2} H_{3} \sigma^{3} \epsilon-\frac{1}{4} e^{\phi} \mathscr{F}_{3} \sigma^{1} \epsilon=0
$$

Curvature from integrability conditions

We choose $P=0$. Components \mathbf{a}, \mathbf{i} of gravitino variation are

$$
\begin{aligned}
& \left(\nabla_{a}-\frac{1}{4} H_{a}+\frac{1}{8} \Gamma_{a} H_{3}\right) \epsilon^{1}=0, \\
& \left(\nabla_{i}-\frac{1}{4} H_{i}+\frac{1}{8} \Gamma_{i} H_{3}\right) \epsilon^{1}=0 .
\end{aligned}
$$

It is important to notice that both spinors are decoupled, just in the presence of non-trivial fluxes H_{3} and F_{3}.

* Then, we can express the gravitino variation as

$$
\begin{aligned}
& \quad\left(\nabla_{i}+\kappa_{i}\right) \epsilon^{1}=\nabla_{i}^{(T)} \epsilon^{1}=0, \\
& \kappa_{i}=-\frac{1}{4} H_{i}+\frac{1}{8} \Gamma_{i} H_{3}
\end{aligned}
$$

Curvature from integrability conditions

* Now, we can compute the metric connection components $d s^{2}=e^{-2 A} g_{\mu \nu} d x^{\mu} d x^{\nu}+h_{m n} d y^{m} d y^{n}$
* The i component of covariant derivative of ϵ^{1} is

$$
\nabla_{i}^{T} \epsilon^{1}=\left(\tilde{\nabla}_{i}-\frac{1}{2} \gamma_{i} \tilde{\gamma} \otimes \tilde{\sigma} \otimes \not \partial A+\kappa_{i}\right) \epsilon^{1}=0
$$

where $\nabla_{i}=\tilde{\nabla}_{i}-\frac{1}{2} \gamma_{i} \tilde{\gamma} \otimes \tilde{\sigma} \otimes \not \partial A$

Curvature from integrability conditions

* Riemann Tensor

$$
\frac{1}{4} \tilde{R}_{i j}{ }^{k l} \gamma_{k l}-\left[\kappa_{i}, \kappa_{j}\right]=0
$$

In the fluxless case, the contorsion term and Riemann tensor vanish for a constant warping factor.

* In the presence of fluxes, the contorsion contributes with an extra term, though we consider a constant warping factor

$$
\left[\kappa_{0}, \kappa_{1}\right]=-\frac{1}{32}\left(N^{2}+M^{2}\right)\left(\nabla \alpha^{2}\right) \gamma_{01}
$$

Curvature from integrability conditions

Then, the corresponding 2d Ricci scalar is given by

$$
R_{(1)}=-\frac{1}{8}\left(N^{2}+M^{2}\right)(\nabla \alpha)^{2} .
$$

* Similarly, for S^{2}, the scalar curvature is $\tilde{R}_{(2)}=-\tilde{R}_{(1)}$. $R=R_{(1)}+R_{(2)}=0$

Some remarks:

* There is a unique 4d solution of this system, namely, the near-horizon geometry $A d S_{2} \times S^{2}$ with $R_{4}=0$
* The relation among fluxes is established by requiring $\mathrm{N}=2$ supergravity in 4d (which implies the decoupling of the spinors)
* For $M=N=0$, i.e., in the fluxless case, both curvatures vanish and we recover Minkowski space-time
* Although it seems that RR fluxes do not play a role in the curvature, they are necessary, otherwise the contribution to R_{4} by T would not be zero

Integrability conditions

* From R_{1} and R_{2}, it is possible to induce the 4 d metric $\tilde{g}_{\mu \nu}$,

$$
d s_{4}^{2}=-\mathcal{A}(A) \frac{x_{1}^{2}}{h} d x_{0}^{2}-\Theta(A) \frac{h}{x_{1}^{2}} d x_{1}^{2}+\Theta(A) h d x_{2}^{2}+\mathcal{B}(A) h \sin ^{2} x_{2} d x_{3}^{2}
$$

$$
h=2 /\left|R_{(1)}\right|
$$

$\mathcal{A}, \mathcal{B}: A$ arbitraty functions

* It is not enough to reproduce the curvatures. In addition, this metric must be solution of an effective theory in 4d

Near-horizon metric

* Therefore, in the presence of an homogenous electromagnetic field of the form,

$$
F_{t \rho}=\left|2 \tilde{R}_{(1)}\right|=\left(\frac{1}{4}\left(N^{2}+M^{2}\right)(\nabla \alpha)^{2}\right)
$$

there is a unique solution for Einstein-Maxwell effective equations

* This solution is the near-horizon metric of an extremal black hole, known as Robinson-Bertotti solution

Near-horizon metric

* The curvature of each subspace is proportional to the flux number ($N^{2}+M^{2}$)
* From the integrability conditions for ϵ^{2}, it is possible to get the same result,

$$
\kappa_{i}=\frac{1}{4} H_{i}-\frac{1}{8} \Gamma_{i} H^{H}
$$

The 2d curvatures remain the same with respect to those obtained from ϵ^{1} equations

* A different case would consider a RR flux configuration in which $Q=0$. A solution of the type $A d S_{2} \times S^{2}$ is also obtained.

Conclusions

* We studied the required conditions that a flux configuration must satisfy in order to obtain 4d space-time of the type $A d S_{2} \times S^{2}$
* A way to construct a 4 d space-time with $A d S_{2} \times S^{2}$ symmetry by turning on 3-form fluxes was developed
* Solutions of this type as near-horizon geometry are not uniquely constructed as the limit of extremal black-holes, but also by compactifications on internal manifolds with torsion derived by the presence of flux compactification

Whante youl

