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Introduction

The presence of extra dimensions in superstrings theories has
established a relation between the physics of theories in 4d and
the geometry of the 6d internal space

An interesting topic concerns the construction of vacua with
positive or null curvature

A common assumption to study these effective 4d theories
involves 10d — 4d x 6d



Introduction

Starting point: 10d theory, namely, Type IIB Supergravity
Features: N = 2, chiral theory, n-form field strengths with n
odd (bosonic content)

Final point: effective 4d theory whose geometry is given by the

product of two maximally symmetric spaces: AdS, x S?

Find a solution of the 10d theory which satisfy the symmetry
(AdS, x S?) and the Einstein-Maxwell equations

This solution is given by the near-horizon geometry of an
extremal black hole (RN), called, the Robinson-Bertotti metric



Introduction

If we consider a fluxless compactification, it is not possible to
obtain a De-Sitter vacuum (Minkowski)
The introduction of fluxes produces important changes (no-go
theorem, Maldacena & Nufiez)

Minkowski

Anti-De-Sitter
For N = 2, four-dimensional supergravity admits solutions:
Minkowski and Robinson-Bertotti



Introduction

Construction of Robinson-Bertotti metric

Compactification (with fluxes) of type IIB supergravity to a 4d
spacetime conformed by the product My x M,
(two-dimensional maximally symmetric spaces)

10d — 2d x 2d x 6d



Flux supergravity compactification

Let us start by considering the most generic 10d metric,
ds? — 2A) (g—,-jdx"dxf + gabdxadxb) + hondy™dy"

By the Einstein trace-reversed equations, the Ricci scalar
R(&i) = Rq) for AdS; satifies



Flux supergravity compactification

Let us start by considering the most generic 10d metric,
ds? — 2A) (g—,-jdx"dxf + gabdxadxb) + hondy™dy"

By the Einstein trace-reversed equations, the Ricci scalar
R(&i) = Rq) for AdS; satifies

Ry + €2 (—Ti + 1 TH) = 2e-2Av2e24

where Ty is the energy-momentum tensor in 10d.



Flux supergravity compactification

The expression of the energy-momentum tensor for a general

n-form is,
1 i —1
To= =T} 4 5 TE = ~Figmt, (FMMos 4 222

A similar result is obtained for IN?(Z) and 7, for §2

It is necessary to consider specific flux configurations in order
to preserve a SO(1,1) x SO(2) symmetry in 4d:

Internal fluxes Fint
Fluxes with general form F, = wa A f,_2



Ricci flat space

Contribution to the 4d Ricci scalar R by fluxes compatible with
S0(1,1) x SO(2) symmetry

CASE |
Fn = wo A fr_o fluxes, with

1 ; .
Wy = EwijdXI A dx’ (1)
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From which the corresponding contribution to IN?(I) by Ty is
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Ricci flat space

CASE I

G, = &2 A ga_2 fluxes, with

1
@y = Ewabdxa A dxP

Where the contribution to f~?(2) by 7() is given by

_ n=902
75_ 4n gﬂ'



Ricci flat space

Contribution of internal fluxes,
Fas

n—1_,

T =
2n ~ "




Ricci flat space

Contribution of internal fluxes,

Fn,

n—1_,

T =
2n ~ "

Contribution of fluxes,
gn = V0/4 A hn—4v

T=-

9

2n Gn



Ricci flat space

Contribution of internal fluxes, Contribution of fluxes,
Fa, G, = Voly A\ h,_y4,
n—1 9—n
T = 2 T=— 2
2n Fn 2n Gn

Ricci-flat 4d space-time is an allowed solution from 10d
supergravity flux compactification into a 4d space-time given by
AdS, x S2, since

R=Ra) + Ra)y = -1+ To)



Examples

We focus on type /IB supergravity compactifications

Consider a 5-form Fg5 of the form £, A F3, with coefficients
Fijmnp and Fabmnp

The corresponding 2d scalar curvatures are

~ e2A(Y)

Ry =— 3 |Fs|?,
~ e2A(Y)

Ry = |Fs|?.



Examples

Let us consider the flux configuration consisting on a NS-NS flux
Hs and a RR flux F3 given by

Hy = (Ndx° A dx! + Mdx? A dx3) A da,
F3 = (Pdx® A dx! + Qdx? A dx3) A da,

with « a function of internal coordinates. The curvatures are

Ray = —2e*20)(N? + P?)(Va)?,
Roy = 2e220)(M? + Q*)(Va)?

Taking M2 + Q% = N? 4 P2, the total 4d curvature vanishes.



Einstein equations

We start computing the corresponding 2d Ricci tensors.
The 10-dimensional component of the Ricci tensor is,

1 G.
RMN = —I— <4§ GMN - _GMQRGQR> (4)

where G3 3 — ’7'H3
To preserve the symmetries of the compactification setup, the most
general metric to consider is

ds? = AW gidx dx! + B g, dx?dx® + e AW h,, dy™dy" (5)



Einstein equations

Expressions of Ricci Tensor for My and Ms, respectively

Riji(g) = e** (V2A+2VA-VB — 2(VA)?) g;

1 (G2 1 QR
= Tmr <4—sGu—zG'QRGf

Ra.b(g) = e2AHB) (V2B — 2V A- VB + 2(VB)?) gap

1 [(G? 1 ~
i <ﬁcab - _GaQRG[?R>

Imt 4

with G3 = F3 — 7H3 complex 3-form.



Bianchi Identities

From dual Bianchi Identities, d * F3 = d x H3 = 0, we get

(Q+7M) (—28,71(2/\ + B)éma + 52(1) =0

(P+7N) (20m(~4A+ B)I"a + 8%a) =0

It is worth mentioning that even though M, and M, are
independent, it seems that they share the same warping factor

Both equations reduce to

Pa =6e 49,A0ma = ge—ﬁf‘(ame‘“‘)(ama)



Bianchi Identities

If we compare Ricci tensor Rjj with Bianchi Identities, we have,

for My
~ ~ 1 3
V2(e4A —a)=2R; + 56_6'4 (8me4A 8me4A> — Eame‘“‘ama
1 2 ~p 12 —2A m
pyp [—P% — 77N? + 2(Im 7)PN] e~ **0mad™a

A similar expression is obtained for M,

If we add both contributions the result is

V2(e4A —a)= o—6A (8me4A 8me4A) _ 38me4A8ma
1

m[(QZ—P2)—T?(M2—N2)+2(Im ) (QM~+PN)]e A mad



Bianchi Identities

Solutions:

Relation between A, o and flux numbers
Constant A (R-B metric in 4d)

Some cases are (T = 0,M? + Q% = N2 + P?):
(M,N,P,Q)#0y M= —@Q, Q=P

P =0 and

T77—1
2Imt

2Imt

T7—1

M
Q
_ N _ 1741
Q=0and 5 =7
Q
M 2imt

_ P _ 1t7+1
M =0 and 5 = 552

For the above expressions, H3 A F3 =0




Up to now, what have we done?

RB metric (R=0) in 4d spacetime

We turned on fluxes which satify the condition of null
curvature, Hz and F3 with M? + Q2 = N2 + P2

We computed the 2d Ricci tensors

We verified that the flux configuration is compatible with
Einstein equations and Bianchi identities

Finally, we concentrated on the simplest solution involvin a
constant warping factor A, because our goal is to find the
minimal conditions under which we can construct the RB
solution in 4d



Curvature from integrability conditions

By choosing one of the above constraints, let us proceed to
compute the scalar curvature of the 2d spaces from the
integrability conditions on the 2d components of 10d spinors

When supersymmetry is preserved, variation of the gravitino is

1 1
5‘UM = VMG - ZHMU3€+ 1—66¢F3FM0'16 =0

. . €1
where o are Pauli matrices and € = ( )
€2



Curvature from integrability conditions

It is desirable to find an independent expression for 10d spinors ¢!

and €2.



Curvature from integrability conditions

It is desirable to find an independent expression for 10d spinors ¢!

and €.
We start by taking the 4d component of W

[ri7 rjkm] = {rh rabm} =0
M, component of gravitino variation

1
. . é (1) (2) _
Vie — Hae —16er< )ae 0,

1
Fg ) — Foimry,
F(32) - F23mr23m

Dilatino variation

1 1
o= —§H3036 — Ze¢F3ale =0



Curvature from integrability conditions

We choose P = 0. Components a, i of gravitino variation are

1 1
(72— 3o+ T e =
1
8

(vi_%lﬂi‘F =i Ha) =

It is important to notice that both spinors are decoupled, just in the
presence of non-trivial fluxes H3 and F3.

Then, we can express the gravitino variation as

(Nt =0,

(Vi+ k) =V

ri=—gHi+ §Tils



Curvature from integrability conditions

Now, we can compute the metric connection components
ds® = e*ZAngx“dx” + hmpdy™dy"”
The i component of covariant derivative of ¢! is

~ 1
Vi = (Vi—E%""Y@&@(?A%-Hi)Gl:O,

where V; = V; — %’y,”y ®F® JA



Curvature from integrability conditions

Riemann Tensor
o My 1 w10
3 Ri o = [ 7] =

In the fluxless case, the contorsion term and Riemann tensor
vanish for a constant warping factor.

In the presence of fluxes, the contorsion contributes with an
extra term, though we consider a constant warping factor

1
[Ko,ﬁl] = —3—2 (N2 + M2) (VOL2)’}/01



Curvature from integrability conditions

Then, the corresponding 2d Ricci scalar is given by
1
R(l) = —§(N2 + M2)(Va)2.

Similarly, for S2, the scalar curvature is r?(z) = —I~?(1).
R=Ru) +Rp =0



Some remarks:
There is a unique 4d solution of this system, namely, the
near-horizon geometry AdS, x S2 with R4 =0
The relation among fluxes is established by requiring N=2
supergravity in 4d (which implies the decoupling of the spinors)
For M = N =0, i.e., in the fluxless case, both curvatures
vanish and we recover Minkowski space-time

Although it seems that RR fluxes do not play a role in the
curvature, they are necessary, otherwise the contribution to Ry
by T would not be zero



Integrability conditions

From Ry and Ry, it is possible to induce the 4d metric g,

42 = —A(A)Y Lo — O(A) L a2 + O(A)hdd + BA)hsin® a2
X1

h=2/|Ru)
A, B:A arbitraty functions

It is not enough to reproduce the curvatures. In addition, this
metric must be solution of an effective theory in 4d



Near-horizon metric

Therefore, in the presence of an homogenous electromagnetic
field of the form,

~ 1
Ftp — |2R(1)‘ — <Z(N2 + M2)(VOZ)2>

there is a unique solution for Einstein-Maxwell effective
equations

This solution is the near-horizon metric of an extremal black
hole, known as Robinson-Bertotti solution



Near-horizon metric

The curvature of each subspace is proportional to the flux
number (N? + M?)

From the integrability conditions for €2, it is possible to get the
same result,

1 1
Kj = Zliqi - gri///

The 2d curvatures remain the same with respect to those
obtained from €' equations

A different case would consider a RR flux configuration in
which @ = 0. A solution of the type AdS, x S? is also
obtained.



Conclusions

We studied the required conditions that a flux configuration
must satisfy in order to obtain 4d space-time of the type

Ad52 X 52

A way to construct a 4d space-time with AdS, x S% symmetry
by turning on 3-form fluxes was developed

Solutions of this type as near-horizon geometry are not
uniquely constructed as the limit of extremal black-holes, but
also by compactifications on internal manifolds with torsion
derived by the presence of flux compactification
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