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Introdu
tion
∗ The presen
e of extra dimensions in superstrings theories hasestablished a relation between the physi
s of theories in 4d andthe geometry of the 6d internal spa
e
∗ An interesting topi
 
on
erns the 
onstru
tion of va
ua withpositive or null 
urvature
∗ A 
ommon assumption to study these e�e
tive 4d theoriesinvolves 10d −→ 4d × 6d



Introdu
tion
∗ Starting point: 10d theory, namely, Type IIB Supergravity

◮ Features: N = 2, 
hiral theory, n-form �eld strengths with nodd (bosoni
 
ontent)
∗ Final point: e�e
tive 4d theory whose geometry is given by theprodu
t of two maximally symmetri
 spa
es: AdS2 × S2
∗ Find a solution of the 10d theory whi
h satisfy the symmetry(AdS2 × S2) and the Einstein-Maxwell equations
∗ This solution is given by the near-horizon geometry of anextremal bla
k hole (RN), 
alled, the Robinson-Bertotti metri




Introdu
tion
∗ If we 
onsider a �uxless 
ompa
ti�
ation, it is not possible toobtain a De-Sitter va
uum (Minkowski)
∗ The introdu
tion of �uxes produ
es important 
hanges (no-gotheorem, Malda
ena & Nuñez)

◮ Minkowski
◮ Anti-De-Sitter

∗ For N = 2, four-dimensional supergravity admits solutions:Minkowski and Robinson-Bertotti



Introdu
tion
∗ Constru
tion of Robinson-Bertotti metri

∗ Compa
ti�
ation (with �uxes) of type IIB supergravity to a 4dspa
etime 
onformed by the produ
t M2 × M̃2(two-dimensional maximally symmetri
 spa
es)
∗ 10d −→ 2d × 2d × 6d



Flux supergravity 
ompa
ti�
ation
Let us start by 
onsidering the most generi
 10d metri
,ds2 = e2A(y)

(g̃ijdx idx j + g̃abdxadxb) + hmndymdynBy the Einstein tra
e-reversed equations, the Ri

i s
alarR(g̃ij) ≡ R̃(1) for AdS2 sati�esR̃(1) + e2A (

−T ii + 14T LL )

= 2e−2A∇2e2Awhere TMN is the energy-momentum tensor in 10d.



Flux supergravity 
ompa
ti�
ation
Let us start by 
onsidering the most generi
 10d metri
,ds2 = e2A(y)

(g̃ijdx idx j + g̃abdxadxb) + hmndymdynBy the Einstein tra
e-reversed equations, the Ri

i s
alarR(g̃ij) ≡ R̃(1) for AdS2 sati�esR̃(1) + e2A (

−T ii + 14T LL )

= 2e−2A∇2e2Awhere TMN is the energy-momentum tensor in 10d.



Flux supergravity 
ompa
ti�
ationThe expression of the energy-momentum tensor for a generaln-form is,
T1 ≡ −T ii +

14T LL = −FiM1...Mn−1F iM1...Mn−1 +
n − 14n F2

∗ A similar result is obtained for R̃(2) and T2 for S2
∗ It is ne
essary to 
onsider spe
i�
 �ux 
on�gurations in orderto preserve a SO(1, 1) × SO(2) symmetry in 4d:

◮ Internal �uxes F intn
◮ Fluxes with general form Fn = ω2 ∧ fn−2



Ri

i �at spa
eContribution to the 4d Ri

i s
alar R̃ by �uxes 
ompatible withSO(1, 1) × SO(2) symmetryCASE I
Fn = ω2 ∧ fn−2 �uxes, with

ω2 =
12ωijdx i ∧ dx j (1)

FjL1...Ln−1F jL1...Ln−1 =
2nF 2 (2)From whi
h the 
orresponding 
ontribution to R̃(1) by T(1) is

T1 = n−94n F2.



Ri

i �at spa
e
CASE IIGn = ω̃2 ∧ gn−2 �uxes, with

ω̃2 =
12ωabdxa ∧ dxb (3)Where the 
ontribution to R̃(2) by T(2) is given by

T2 = n−94n G2n .



Ri

i �at spa
eContribution of internal �uxes,
Fn,

T =
n − 12n F2n Contribution of �uxes,

Gn = Vol4 ∧ hn−4,
T = −

9− n2n G2nRi

i-�at 4d spa
e-time is an allowed solution from 10dsupergravity �ux 
ompa
ti�
ation into a 4d spa
e-time given byAdS2 × S2, sin
eR̃ = R̃(1) + R̃(2) = −e2A(T1 + T2)
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Examples
∗ We fo
us on type IIB supergravity 
ompa
ti�
ations
∗ Consider a 5-form F5 of the form f2 ∧ F3, with 
oe�
ientsFijmnp and Fabmnp
∗ The 
orresponding 2d s
alar 
urvatures areR̃(1) = −

e2A(y)5 |F5|2,R̃(2) =
e2A(y)5 |F5|2.



ExamplesLet us 
onsider the �ux 
on�guration 
onsisting on a NS-NS �uxH3 and a RR �ux F3 given byH3 = (Ndx0 ∧ dx1 + Mdx2 ∧ dx3) ∧ dα,F3 = (Pdx0 ∧ dx1 + Qdx2 ∧ dx3) ∧ dα,with α a fun
tion of internal 
oordinates. The 
urvatures areR̃(1) = −2e2A(y)(N2 + P2)(∇α)2,R̃(2) = 2e2A(y)(M2 + Q2)(∇α)2Taking M2 + Q2 = N2 + P2, the total 4d 
urvature vanishes.



Einstein equationsWe start 
omputing the 
orresponding 2d Ri

i tensors.The 10-dimensional 
omponent of the Ri

i tensor is,RMN = −
1Imτ

(G 2348 GMN −
14GMQRḠQRN )

, (4)where G3 = F3 − τH3.To preserve the symmetries of the 
ompa
ti�
ation setup, the mostgeneral metri
 to 
onsider isds2 = e2A(y)g̃ijdx idx j +e2B(y)g̃abdxadxb+e−2A(y)h̃mndymdyn (5)



Einstein equationsExpressions of Ri

i Tensor for M2 and M̃2, respe
tivelyRij (g) = e4A (

∇̃2A + 2∇̃A· ∇̃B − 2(∇̃A)2) g̃ij
−

1Imτ

(G 2348 Gij − 14GiQR ḠQRj )Rab(g) = e2(A+B)
(

∇̃2B − 2∇̃A· ∇̃B + 2(∇̃B)2) g̃ab
−

1Imτ

(G 2348 Gab − 14GaQRḠQRb )with G3 = F3 − τH3 
omplex 3-form.



Bian
hi Identities
∗ From dual Bian
hi Identities, d ∗ F3 = d ∗ H3 = 0, we get

(Q + τM)
(

−2∂m(2A + B)∂̃mα + ∂̃2α)

= 0
(P + τN)

(2∂m(−4A + B)∂̃mα + ∂̃2α)

= 0
∗ It is worth mentioning that even though M2 and M̃2 areindependent, it seems that they share the same warping fa
tor
∗ Both equations redu
e to

∂̃2α = 6e−2A∂mA ∂mα =
32e−6A(∂me4A)(∂mα)



Bian
hi Identities
∗ If we 
ompare Ri

i tensor Rij with Bian
hi Identities, we have,for M2

∇̃2(e4A − α) = 2R̃1 +
12e−6A (

∂me4A ∂me4A)

−
32∂me4A∂mα

+
14Im τ

[

−P2 − τ τ̃N2 + 2(Im τ)PN] e−2A∂mα∂mαA similar expression is obtained for M̃2
∗ If we add both 
ontributions the result is

∇̃2(e4A − α) = e−6A (

∂me4A ∂me4A)

− 3∂me4A∂mα

+
14Im τ

[(Q2−P2)−τ τ̃(M2−N2)+2(Im τ)(QM+PN)]e−2A∂mα∂mα



Bian
hi Identities
∗ Solutions:

◮ Relation between A, α and �ux numbers
◮ Constant A (R-B metri
 in 4d)

∗ Some 
ases are (T = 0,M2 + Q2 = N2 + P2):
◮ (M ,N ,P ,Q) 6= 0 y M = −Q, Q = P
◮ P = 0 and MQ = τ τ̄−12Imτ

◮ Q = 0 and NP = τ τ̄+12Imτ

◮ N = 0 and QM = τ τ̄−12Imτ

◮ M = 0 and PN = τ τ̄+12Imτ

∗ For the above expressions, H3 ∧ F3 = 0



Up to now, what have we done?
∗ RB metri
 (R=0) in 4d spa
etime
∗ We turned on �uxes whi
h satify the 
ondition of null
urvature, H3 and F3 with M2 + Q2 = N2 + P2
∗ We 
omputed the 2d Ri

i tensors
∗ We veri�ed that the �ux 
on�guration is 
ompatible withEinstein equations and Bian
hi identities
∗ Finally, we 
on
entrated on the simplest solution involvin a
onstant warping fa
tor A, be
ause our goal is to �nd theminimal 
onditions under whi
h we 
an 
onstru
t the RBsolution in 4d



Curvature from integrability 
onditions
∗ By 
hoosing one of the above 
onstraints, let us pro
eed to
ompute the s
alar 
urvature of the 2d spa
es from theintegrability 
onditions on the 2d 
omponents of 10d spinors
∗ When supersymmetry is preserved, variation of the gravitino is

δΨM = ∇Mǫ −
14 /HMσ3ǫ +

116eφ/F 3ΓMσ1ǫ = 0where σ are Pauli matri
es and ǫ =

(

ǫ1
ǫ2 )



Curvature from integrability 
onditionsIt is desirable to �nd an independent expression for 10d spinors ǫ1and ǫ2.We start by taking the 4d 
omponent of δΨ

∗ [Γi ,Γjkm] = {Γi ,Γabm} = 0
∗ M2 
omponent of gravitino variation

∇iǫ − 14 /H iσ3ǫ − 116eφΓi (/F (1)3 − /F (2)3 )

σ1ǫ = 0,
/F (1)3 = F 01mΓ01m
/F (2)3 = F 23mΓ23m

∗ Dilatino variation
δλ = −

12 /H3σ3ǫ − 14eφ/F 3σ1ǫ = 0
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Curvature from integrability 
onditionsWe 
hoose P = 0. Components a, i of gravitino variation are
(

∇a − 14 /Ha +
18Γa /H3) ǫ1 = 0,

(

∇i − 14 /H i + 18Γi /H3) ǫ1 = 0.It is important to noti
e that both spinors are de
oupled, just in thepresen
e of non-trivial �uxes H3 and F3.
∗ Then, we 
an express the gravitino variation as

(∇i + κi )ǫ1 = ∇
(T )i ǫ1 = 0,

κi = −14 /H i + 18Γi /H3



Curvature from integrability 
onditions
∗ Now, we 
an 
ompute the metri
 
onne
tion 
omponentsds2 = e−2Agµνdxµdxν + hmndymdyn
∗ The i 
omponent of 
ovariant derivative of ǫ1 is

∇Ti ǫ1 =

(

∇̃i − 12γi γ̃ ⊗ σ̃ ⊗ /∂A + κi) ǫ1 = 0,where ∇i = ∇̃i − 12γi γ̃ ⊗ σ̃ ⊗ /∂A



Curvature from integrability 
onditions
∗ Riemann Tensor 14 R̃ij klγkl − [κi , κj ] = 0In the �uxless 
ase, the 
ontorsion term and Riemann tensorvanish for a 
onstant warping fa
tor.
∗ In the presen
e of �uxes, the 
ontorsion 
ontributes with anextra term, though we 
onsider a 
onstant warping fa
tor

[κ0, κ1] = −
132 (N2 + M2) (∇α2)γ01



Curvature from integrability 
onditions
∗ Then, the 
orresponding 2d Ri

i s
alar is given byR(1) = −

18(N2 + M2)(∇α)2.
∗ Similarly, for S2, the s
alar 
urvature is R̃(2) = −R̃(1).R = R(1) + R(2) = 0



Some remarks:
∗ There is a unique 4d solution of this system, namely, thenear-horizon geometry AdS2 × S2 with R4 = 0
∗ The relation among �uxes is established by requiring N=2supergravity in 4d (whi
h implies the de
oupling of the spinors)
∗ For M = N = 0, i.e., in the �uxless 
ase, both 
urvaturesvanish and we re
over Minkowski spa
e-time
∗ Although it seems that RR �uxes do not play a role in the
urvature, they are ne
essary, otherwise the 
ontribution to R4by T would not be zero



Integrability 
onditions
∗ From R1 and R2, it is possible to indu
e the 4d metri
 g̃µν ,ds24 = −A(A)

x21h dx20 − Θ(A)
hx21 dx21 + Θ(A)hdx22 + B(A)h sin2 x2dx23h = 2/|R(1)|

A, B:A arbitraty fun
tions
∗ It is not enough to reprodu
e the 
urvatures. In addition, thismetri
 must be solution of an e�e
tive theory in 4d



Near-horizon metri

∗ Therefore, in the presen
e of an homogenous ele
tromagneti
�eld of the form,Ftρ = |2R̃(1)| =

(14(N2 +M2)(∇α)2)there is a unique solution for Einstein-Maxwell e�e
tiveequations
∗ This solution is the near-horizon metri
 of an extremal bla
khole, known as Robinson-Bertotti solution



Near-horizon metri

∗ The 
urvature of ea
h subspa
e is proportional to the �uxnumber (N2 + M2)
∗ From the integrability 
onditions for ǫ2, it is possible to get thesame result,

κi =
14 /H i − 18Γi /H

∗ The 2d 
urvatures remain the same with respe
t to thoseobtained from ǫ1 equations
∗ A di�erent 
ase would 
onsider a RR �ux 
on�guration inwhi
h Q = 0. A solution of the type AdS2 × S2 is alsoobtained.



Con
lusions
∗ We studied the required 
onditions that a �ux 
on�gurationmust satisfy in order to obtain 4d spa
e-time of the typeAdS2 × S2
∗ A way to 
onstru
t a 4d spa
e-time with AdS2 × S2 symmetryby turning on 3-form �uxes was developed
∗ Solutions of this type as near-horizon geometry are notuniquely 
onstru
ted as the limit of extremal bla
k-holes, butalso by 
ompa
ti�
ations on internal manifolds with torsionderived by the presen
e of �ux 
ompa
ti�
ation



Thank you!


