$\Delta L = 2 \ {\rm PROCESSES} \ {\rm AND} \ {\rm THE} \ {\rm RESONANT} \ {\rm MECHANISM} \\ {\rm SEMILEPTONIC} \ {\rm FOUR-BODY} \ {\rm DECAYS} \\ {\rm CONCLUSIONS} \ {\rm CONCLUSI$

EFFECTS OF HEAVY MAJORANA NEUTRINOS IN SEMILEPTONIC HEAVY QUARK DECAYS

Néstor Quintero Poveda

Physics Department CINVESTAV

In Collaboration: G. López Castro (CINVESTAV) D. Delepine (Universidad de Guanajuato)

XIII Mexican Workshop on Particles and Fields León (Guanajuato), October 22, 2011 $\Delta L = 2 \mbox{ PROCESSES AND THE RESONANT MECHANISM SEMILEPTONIC FOUR-BODY DECAYS CONCLUSIONS } \label{eq:Lambda}$

OUTLINE

INTRODUCTION

2 $\Delta L = 2$ **PROCESSES AND THE RESONANT MECHANISM**

- Heavy Neutrino Mixing
- General amplitude
- Resonant Mechanism in charged pseudoscalar mesons

SEMILEPTONIC FOUR-BODY DECAYS • LNV $\bar{B}^0 \rightarrow D^+ \ell^- \ell^- \pi^+$ DECAYS

• LNV $t \rightarrow b \ell^+ \ell^+ W^-$ DECAYS

CONCLUSIONS

프 문 문 프 문 문

3

INTRODUCTION

 $\Delta L = 2$ PROCESSES AND THE RESONANT MECHANISM SEMILEPTONIC FOUR-BODY DECAYS CONCLUSIONS

OUTLINE

INTRODUCTION

(2) $\Delta L = 2$ **PROCESSES AND THE RESONANT MECHANISM**

- Heavy Neutrino Mixing
- General amplitude
- Resonant Mechanism in charged pseudoscalar mesons

SEMILEPTONIC FOUR-BODY DECAYS • LNV $\bar{B}^0 \rightarrow D^+ \ell^- \ell^- \pi^+$ DECAYS • LNV $t \rightarrow b \ell^+ \ell^+ W^-$ DECAYS

CONCLUSIONS

A B M A B M

3

$\Delta L = 2 \ {\rm PROCESSES} \ {\rm AND} \ {\rm THE} \ {\rm RESONANT} \ {\rm MECHANISM} \\ {\rm SEMILEPTONIC} \ {\rm FOUR-BODY} \ {\rm DECAYS} \\ {\rm CONCLUSIONS} \ {\rm CONCLUSI$

INTRODUCTION

¿ Dirac or Majorana ?

Dirac Neutrino $\rightarrow \nu \neq \bar{\nu}$ Majorana Neutrino $\rightarrow \nu = \bar{\nu}$

A B > A B >

3

Dirac Neutrino $\rightarrow L = L_e + L_\mu + L_\tau$ Majorana Neutrino $\rightarrow L \neq L_e + L_\mu + L_\tau$

INTRODUCTION

¿ Dirac or Majorana ?

Dirac Neutrino $\rightarrow \nu \neq \bar{\nu}$ Majorana Neutrino $\rightarrow \nu = \bar{\nu}$

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Dirac Neutrino
$$\rightarrow L = L_e + L_\mu + L_\tau$$

Majorana Neutrino $\rightarrow L \neq L_e + L_\mu + L_\tau$

Lepton number violating (LNV) processes, where the total lepton number is violated by two units ($\Delta L = 2$), represent the most appropriate tool to addres this question.

INTRODUCTION

¿ Dirac or Majorana ?

Dirac Neutrino $\rightarrow \nu \neq \bar{\nu}$ Majorana Neutrino $\rightarrow \nu = \bar{\nu}$

Dirac Neutrino
$$\rightarrow L = L_e + L_\mu + L_\tau$$

Majorana Neutrino $\rightarrow L \neq L_e + L_\mu + L_\tau$

Lepton number violating (LNV) processes, where the total lepton number is violated by two units ($\Delta L = 2$), represent the most appropriate tool to addres this question.

NTRODUCTION

 $\Delta L = 2$ PROCESSES AND THE RESONANT MECHANISM SEMILEPTONIC FOUR-BODY DECAYS CONCLUSIONS

INTRODUCTION

LNV Processes

• Nuclear $0
u\beta\beta$ decay: $(A,Z) \rightarrow (A,Z+2) + e^- + e^-$

The observation of this process will prove that $\not\!\!L$ and will establish the Majorana nature of the light neutrinos.

Schechter-Valle Theorem

< ∃ >

э

•
$$\tau^{\mp} \to \ell^{\pm} M_1^{\mp} M_2^{\mp}$$

• $(K^{\pm}, D^{\pm}, D_s^{\pm}, B^{\pm}, B_c^{\pm}) \to \ell_1^{\pm} \ell_2^{\pm} M^{\mp}$
• $\Sigma^- \to \Sigma^+ e^- e^-, \Xi^- \to p \mu^- \mu^-,$
• $e^- \to \mu^+, \mu^- \to e^+ \text{ y } \mu^- \to \mu^+.$
• $p \bar{p} \to \ell_1 \ell_2 X$

In this work, we will study alternative LNV processes in semileptonic decays of neutral B meson and top quark:

$$\bar{B}^0 \rightarrow D^+ \ell^- \ell^- \pi^+, \quad t \rightarrow b \ell^+ \ell^+ W^-$$

INTRODUCTION

 $\Delta L = 2$ PROCESSES AND THE RESONANT MECHANISM SEMILEPTONIC FOUR-BODY DECAYS CONCLUSIONS

INTRODUCTION

LNV Processes

• Nuclear $0
u\beta\beta$ decay: $(A,Z) \rightarrow (A,Z+2) + e^- + e^-$

The observation of this process will prove that $\not\!\!L$ and will establish the Majorana nature of the light neutrinos.

Schechter-Valle Theorem

< ∃⇒

•
$$\tau^{\mp} \to \ell^{\pm} M_1^{\mp} M_2^{\mp}$$

• $(K^{\pm}, D^{\pm}, D_s^{\pm}, B^{\pm}, B_c^{\pm}) \to \ell_1^{\pm} \ell_2^{\pm} M^{\mp}$
• $\Sigma^- \to \Sigma^+ e^- e^-, \Xi^- \to p \mu^- \mu^-,$
• $e^- \to \mu^+, \mu^- \to e^+ \text{ y } \mu^- \to \mu^+.$
• $p \bar{p} \to \ell_1 \ell_2 X$

In this work, we will study alternative LNV processes in semileptonic decays of neutral B meson and top quark:

$$\bar{B}^0 \rightarrow D^+ \ell^- \ell^- \pi^+, \quad t \rightarrow b \ell^+ \ell^+ W^-$$

 $\Delta L = 2 \ \mbox{PROCESSES AND THE RESONANT MECHANISM} \\ \Delta L = 2 \ \mbox{PROCESSES AND THE RESONANT MECHANISM} \\ SEMILEPTONIC FOUR-BODY DECAYS \\ CONCLUSIONS \\ CONCLUSION$

Heavy Neutrino Mixing General amplitude Resonant Mechanism in charged pseudoscalar mesons

くぼう くほう くほう

3

OUTLINE

INTRODUCTION

2 $\Delta L = 2$ **PROCESSES AND THE RESONANT MECHANISM**

- Heavy Neutrino Mixing
- General amplitude
- Resonant Mechanism in charged pseudoscalar mesons

SEMILEPTONIC FOUR-BODY DECAYS
 • LNV B
 [¯]→ D⁺ℓ⁻ℓ⁻π⁺ DECAYS
 • LNV t→ bℓ⁺ℓ⁺W⁻ DECAYS

CONCLUSIONS

 $\Delta L = 2 \ \mbox{PROCESSES AND THE RESONANT MECHANISM} \\ \Delta L = 2 \ \mbox{PROCESSES AND THE RESONANT MECHANISM} \\ SEMILEPTONIC FOUR-BODY DECAYS \\ CONCLUSIONS \\ CONCLUSIONS \\ \mbox{CONCLUSIONS} \\ \end{tabular}$

Heavy Neutrino Mixing General amplitude Resonant Mechanism in charged pseudoscalar mesons

Heavy Neutrino Mixing

 $\mathsf{Standard} \ \mathsf{Model} \ \Longrightarrow \ \mathsf{massless} \ \mathsf{neutrinos}$

See-saw mechanism:
$$N_{kR} = (N_1, N_2, ..., N_n)_R$$
.

 $N_R^c \equiv \mathcal{C} \bar{N}_R^T = N_R \longrightarrow$ Majorana Neutrinos

Yukawa Lagrangian:

$$-\mathcal{L}_Y = \bar{\mathsf{L}}_L Y_\ell H E_R + \bar{\mathsf{L}}_L Y_\nu \tilde{H} N_R + \text{h.c.}$$

$$-\mathcal{L}_M = \frac{1}{2}\bar{N}_R^c M_R N_R + \text{h.c.} \quad (\Delta L = 2).$$

(3)

Source of lepton number violation

$$-\mathcal{L}_{W} = \frac{g}{\sqrt{2}} W_{\mu}^{+} \sum_{\ell=e,\mu,\tau} \left[\sum_{j=1}^{3} U_{\ell j}(\bar{\ell}\gamma^{\mu} P_{L}\nu_{j}) + \sum_{k=1}^{n} V_{\ell k}(\bar{\ell}\gamma^{\mu} P_{L}N_{k}) \right] + h.c.,$$

▲
$$P_L = (1 - \gamma_5)/2$$

- ▲ $U_{\ell i}$ = PMNS matrix
- \land $V_{\ell k}$ = mixing matrix of charged leptons with heavy neutrinos

Néstor Quintero Poveda - CINVESTAV XIII Mexican Workshop on Particles and Fields

 $\Delta L = 2 \ \mbox{PROCESSES AND THE RESONANT MECHANISM} \\ \Delta L = 2 \ \mbox{PROCESSES AND THE RESONANT MECHANISM} \\ SEMILEPTONIC FOUR-BODY DECAYS \\ CONCLUSIONS \\ CONCLUSIONS \\ \mbox{CONCLUSIONS} \\ \end{tabular}$

Heavy Neutrino Mixing General amplitude Resonant Mechanism in charged pseudoscalar mesons

Heavy Neutrino Mixing

 $\mathsf{Standard} \ \mathsf{Model} \ \Longrightarrow \ \mathsf{massless} \ \mathsf{neutrinos}$

See-saw mechanism:
$$N_{kR} = (N_1, N_2, ..., N_n)_R$$
.

 $N_R^c \equiv C \bar{N}_R^T = N_R \longrightarrow$ Majorana Neutrinos

Yukawa Lagrangian:

$$-\mathcal{L}_Y = \bar{\mathsf{L}}_L Y_\ell H E_R + \bar{\mathsf{L}}_L Y_\nu \tilde{H} N_R + \text{h.c.}$$

$$-\mathcal{L}_M = \frac{1}{2}\bar{N}_R^c M_R N_R + \text{h.c.} \quad (\Delta L = 2).$$

э

< ∃ >

Source of lepton number violation

$$-\mathcal{L}_{W} = \frac{g}{\sqrt{2}} W^{+}_{\mu} \sum_{\ell=e,\mu,\tau} \left[\sum_{j=1}^{3} U_{\ell j}(\bar{\ell}\gamma^{\mu} P_{L}\nu_{j}) + \sum_{k=1}^{n} V_{\ell k}(\bar{\ell}\gamma^{\mu} P_{L}N_{k}) \right] + h.c.,$$

- ▲ $P_L = (1 \gamma_5)/2$
- ▲ $U_{\ell i}$ = PMNS matrix
- ▲ $V_{\ell k}$ = mixing matrix of charged leptons with heavy neutrinos

 $\Delta L = 2 \ \mbox{PROCESSES AND THE RESONANT MECHANISM} \\ SEMILEPTONIC FOUR-BODY DECAYS CONCLUSIONS \\ \label{eq:Legendre}$

Heavy Neutrino Mixing General amplitude Resonant Mechanism in charged pseudoscalar mesons

$\Delta L = 2$ processes and the resonant mechanism

The Majorana nature of neutrinos can be experimentally verified via **LNV processes** The leptonic $\Delta L = 2$ subprocess

$$W^-W^- \to \ell_i^-\ell_j^-$$

is induced via Majorana neutrino exchange.

- ∢ ⊒ →

э

Heavy Neutrino Mixing General amplitude Resonant Mechanism in charged pseudoscalar mesons

$\Delta L = 2$ processes and the resonant mechanism

The leptonic tensor current

$$\begin{split} L^{\mu\nu} &= \frac{g^2}{2} \Biggl\{ \sum_{j=1}^3 U_{\ell_1 j} U_{\ell_2 j} m_{\nu_j} \bar{u}_{\ell_1} \Biggl[\frac{\gamma^{\mu} \gamma^{\nu}}{q^2 - m_{\nu_j}^2 + i \Gamma_{\nu_j} m_{\nu_j}} + \frac{\gamma^{\nu} \gamma^{\mu}}{\tilde{q}^2 - m_{\nu_j}^2 + i \Gamma_{\nu_j} m_{\nu_j}} \Biggr] P_R u^c_{\ell_2} \\ &+ \sum_{k=1}^n V_{\ell_1 k} V_{\ell_2 k} m_{N_k} \bar{u}_{\ell_1} \Biggl[\frac{\gamma^{\mu} \gamma^{\nu}}{q^2 - m_{N_k}^2 + i \Gamma_{N_k} m_{N_k}} + \frac{\gamma^{\nu} \gamma^{\mu}}{\tilde{q}^2 - m_{N_k}^2 + i \Gamma_{N_k} m_{N_k}} \Biggr] P_R u^c_{\ell_2} \Biggr\}. \end{split}$$

Atre, Han, Pascoli, & Zhang, JHEP 0905, 030 (2009)

• Light Majorana neutrinos
$$(q^2 \gg m_{\nu_j}^2)$$
:
 $\langle m_{\ell_1 \ell_2} \rangle \equiv \sum_{j=1}^3 U_{\ell_1 j} U_{\ell_2 j} m_{\nu_j}$ Effective Majorana mass

Heavy Neutrino Mixing General amplitude Resonant Mechanism in charged pseudoscalar mesons

$\Delta L = 2$ processes and the resonant mechanism

The leptonic tensor current

$$\begin{split} L^{\mu\nu} &= \frac{g^2}{2} \Biggl\{ \sum_{j=1}^3 U_{\ell_1 j} U_{\ell_2 j} m_{\nu_j} \,\bar{u}_{\ell_1} \Biggl[\frac{\gamma^{\mu} \gamma^{\nu}}{q^2 - m_{\nu_j}^2 + i\Gamma_{\nu_j} m_{\nu_j}} + \frac{\gamma^{\nu} \gamma^{\mu}}{\tilde{q}^2 - m_{\nu_j}^2 + i\Gamma_{\nu_j} m_{\nu_j}} \Biggr] P_R u^c_{\ell_2} \\ &+ \sum_{k=1}^n V_{\ell_1 k} V_{\ell_2 k} m_{N_k} \bar{u}_{\ell_1} \Biggl[\frac{\gamma^{\mu} \gamma^{\nu}}{q^2 - m_{N_k}^2 + i\Gamma_{N_k} m_{N_k}} + \frac{\gamma^{\nu} \gamma^{\mu}}{\tilde{q}^2 - m_{N_k}^2 + i\Gamma_{N_k} m_{N_k}} \Biggr] P_R u^c_{\ell_2} \Biggr\}. \end{split}$$

Atre, Han, Pascoli, & Zhang, JHEP 0905, 030 (2009)

• Light Majorana neutrinos $(q^2 \gg m_{\nu_j}^2)$: $\langle m_{\ell_1 \ell_2} \rangle \equiv \sum_{j=1}^3 U_{\ell_1 j} U_{\ell_2 j} \ m_{\nu_j}$ Effective Majorana mass

• Heavy Majorana neutrinos $(m_{N_k}^2 \gg q^2)$: $\sum_k V_{\ell_1 k} V_{\ell_2 k} / m_{N_k}$

Heavy Neutrino Mixing General amplitude Resonant Mechanism in charged pseudoscalar mesons

$\Delta L = 2$ processes and the resonant mechanism

The leptonic tensor current

$$\begin{split} L^{\mu\nu} &= \frac{g^2}{2} \Biggl\{ \sum_{j=1}^3 U_{\ell_1 j} U_{\ell_2 j} m_{\nu_j} \,\bar{u}_{\ell_1} \Biggl[\frac{\gamma^{\mu} \gamma^{\nu}}{q^2 - m_{\nu_j}^2 + i\Gamma_{\nu_j} m_{\nu_j}} + \frac{\gamma^{\nu} \gamma^{\mu}}{\tilde{q}^2 - m_{\nu_j}^2 + i\Gamma_{\nu_j} m_{\nu_j}} \Biggr] P_R u^c_{\ell_2} \\ &+ \sum_{k=1}^n V_{\ell_1 k} V_{\ell_2 k} m_{N_k} \bar{u}_{\ell_1} \Biggl[\frac{\gamma^{\mu} \gamma^{\nu}}{q^2 - m_{N_k}^2 + i\Gamma_{N_k} m_{N_k}} + \frac{\gamma^{\nu} \gamma^{\mu}}{\tilde{q}^2 - m_{N_k}^2 + i\Gamma_{N_k} m_{N_k}} \Biggr] P_R u^c_{\ell_2} \Biggr\}. \end{split}$$

Atre, Han, Pascoli, & Zhang, JHEP 0905, 030 (2009)

• Light Majorana neutrinos $(q^2 \gg m_{\nu_j}^2)$: $\langle m_{\ell_1 \ell_2} \rangle \equiv \sum_{j=1}^3 U_{\ell_1 j} U_{\ell_2 j} \ m_{\nu_j}$ Effective Majorana mass

• Heavy Majorana neutrinos ($m^2_{N_k} \gg q^2$): $\sum_k V_{\ell_1 k} V_{\ell_2 k} / m_{N_k}$

• Resonant Majorana neutrinos ($q^2 \simeq m_{N_k}^2$): $\sim \sum_k 1/\Gamma_{N_k}$ (Strong dependence)

We will assume the dominance of only one heavy neutrino.

Heavy Neutrino Mixing General amplitude Resonant Mechanism in charged pseudoscalar mesons

$\Delta L = 2$ processes and the resonant mechanism

The leptonic tensor current

$$\begin{split} L^{\mu\nu} &= \frac{g^2}{2} \Biggl\{ \sum_{j=1}^3 U_{\ell_1 j} U_{\ell_2 j} m_{\nu_j} \bar{u}_{\ell_1} \Biggl[\frac{\gamma^{\mu} \gamma^{\nu}}{q^2 - m_{\nu_j}^2 + i \Gamma_{\nu_j} m_{\nu_j}} + \frac{\gamma^{\nu} \gamma^{\mu}}{\tilde{q}^2 - m_{\nu_j}^2 + i \Gamma_{\nu_j} m_{\nu_j}} \Biggr] P_R u^c_{\ell_2} \\ &+ \sum_{k=1}^n V_{\ell_1 k} V_{\ell_2 k} m_{N_k} \bar{u}_{\ell_1} \Biggl[\frac{\gamma^{\mu} \gamma^{\nu}}{q^2 - m_{N_k}^2 + i \Gamma_{N_k} m_{N_k}} + \frac{\gamma^{\nu} \gamma^{\mu}}{\tilde{q}^2 - m_{N_k}^2 + i \Gamma_{N_k} m_{N_k}} \Biggr] P_R u^c_{\ell_2} \Biggr\}. \end{split}$$

Atre, Han, Pascoli, & Zhang, JHEP 0905, 030 (2009)

• Light Majorana neutrinos $(q^2 \gg m_{\nu_j}^2)$: $\boxed{\langle m_{\ell_1 \ell_2} \rangle \equiv \sum_{j=1}^3 U_{\ell_1 j} U_{\ell_2 j} \ m_{\nu_j}} \quad \text{Effective Majorana mass}$

• Heavy Majorana neutrinos ($m^2_{N_k} \gg q^2$): $\sum_k V_{\ell_1 k} V_{\ell_2 k} / m_{N_k}$

• Resonant Majorana neutrinos ($q^2 \simeq m_{N_k}^2$): $\sim \sum_k 1/\Gamma_{N_k}$ (Strong dependence)

We will assume the dominance of only one heavy neutrino.

Heavy Neutrino Mixing General amplitude Resonant Mechanism in charged pseudoscalar mesons

Indirect bounds on $\langle m_{\ell_1\ell_2} angle$

Néstor Quintero Poveda - CINVESTAV XIII Mexican Workshop on Particles and Fields

Heavy Neutrino Mixing General amplitude Resonant Mechanism in charged pseudoscalar mesons

Direct bounds on $\langle m_{\ell_1 \ell_2} \rangle$

Nuclei	$T_{1/2}^{0\nu}$	$\left< m_{etaeta} \right>$ (eV)	
$^{76}\mathrm{Ge}$	$\geq 1.9{ imes}10^{25}$ y	< 0,35	Heidelberg-Moscow
$^{130}\mathrm{Te}$	\geq 3.0 $ imes$ 10 24 y	< (0,19-0,68)	CUORICINO

W. Rodejohann, Int. J. Mod. Phys. E 20, 1833 (2011)

Alternative $0\nu\beta\beta$ decays

• $\tau^{\mp} \to \ell^{\pm} M_1^{\mp} M_2^{\mp}$ and $(K^{\pm}, D^{\pm}, D_s^{\pm}, B^{\pm}, B_c^{\pm}) \to \ \ell_1^{\pm} \ell_2^{\pm} M^{\mp}$

Atre, Han, Pascoli, & Zhang, JHEP **0905**, 030 (2009) Cvetic, *et al*, Phys. Rev. D **82**, 053010 (2010) Helo, Kovalenko, & Schmidt, Nucl. Phys. **B853**, 80 (2011)

• hyperon decays: $\Sigma^- \rightarrow \Sigma^+ e^- e^-, \ \Xi^- \rightarrow p \mu^- \mu^-$

Littenberg & Shrock, Phys. Rev. D **46**, R892 (1992) Barbero, López Castro, & Mariano, Phys. Lett. B **566**, 98 (2003)

• Nuclear conversion: $e^- \rightarrow \mu^+$, $\mu^- \rightarrow e^+$ y $\mu^- \rightarrow \mu^+$

Domin, Kovalenko, Faessler, & Simkovic, Phys. Rev. C 70, 065501 (2004) Simkovic, Faessler, Kovalenko, & Schmidt, Phys. Rev. D 66, 033005 (2002)

୨୯୯

Heavy Neutrino Mixing General amplitude Resonant Mechanism in charged pseudoscalar mesons

Direct bounds on $\langle m_{\ell_1 \ell_2} \rangle$

Nuclei	$T_{1/2}^{0\nu}$	$\left< m_{etaeta} \right>$ (eV)	
$^{76}\mathrm{Ge}$	$\geq 1.9{ imes}10^{25}$ y	< 0,35	Heidelberg-Moscow
$^{130}\mathrm{Te}$	\geq 3.0 $ imes$ 10 24 y	< (0,19-0,68)	CUORICINO

W. Rodejohann, Int. J. Mod. Phys. E 20, 1833 (2011)

Alternative $0\nu\beta\beta$ decays

•
$$\tau^{\mp} \to \ell^{\pm} M_1^{\mp} M_2^{\mp}$$
 and $(K^{\pm}, D^{\pm}, D_s^{\pm}, B^{\pm}, B_c^{\pm}) \to \ell_1^{\pm} \ell_2^{\pm} M^{\mp}$

Atre, Han, Pascoli, & Zhang, JHEP **0905**, 030 (2009) Cvetic, *et al*, Phys. Rev. D **82**, 053010 (2010) Helo, Kovalenko, & Schmidt, Nucl. Phys. **B853**, 80 (2011)

• hyperon decays: $\Sigma^- \rightarrow \Sigma^+ e^- e^-$, $\Xi^- \rightarrow p \mu^- \mu^-$

Littenberg & Shrock, Phys. Rev. D **46**, R892 (1992) Barbero, López Castro, & Mariano, Phys. Lett. B **566**, 98 (2003)

• Nuclear conversion: $e^- \rightarrow \mu^+$, $\mu^- \rightarrow e^+$ y $\mu^- \rightarrow \mu^+$

Domin, Kovalenko, Faessler, & Simkovic, Phys. Rev. C 70, 065501 (2004) Simkovic, Faessler, Kovalenko, & Schmidt, Phys. Rev. D 66, 033005 (2002)

つくで

 $\Delta L = 2 \ \mbox{PROCESSES AND THE RESONANT MECHANISM} \\ SEMILEPTONIC FOUR-BODY DECAYS CONCLUSIONS \\ CONCLUSIONS$

イロト イポト イヨト イヨト

2

Direct bounds on $\langle m_{\ell_1\ell_2} angle$

Experimental Limits

$$\blacktriangle K^{\pm} \to \pi^{\mp} \mu^{\pm} \mu^{\pm} \longrightarrow \qquad \langle m_{\mu\mu} \rangle < 4 \times 10^4 \text{ MeV}$$

•
$$\mu^- + (Z, A) \to e^+ + (A, Z - 2) \longrightarrow \langle m_{e\mu} \rangle < 17(82) \text{ MeV}$$

Domin, Kovalenko, Faessler, & Simkovic, Phys. Rev. C 70, 065501 (2004)

▲
$$M_1^+ \to e^+ \mu^+ (e^+ \tau^+) M_2^- \longrightarrow (m_{e\tau}), \ \langle m_{\mu\tau} \rangle \le (10 - 100) \text{ TeV}$$

Atre, Barger & Han, Phys. Rev. D 71, 113014 (2005)

$$\langle m_{\mu\mu} \rangle \lesssim 0.14 \text{ eV} \implies \boxed{\mathcal{B}_{th}(B^+ \to \pi^- \mu^+ \mu^+) \sim 10^{-26}}$$
$$\mathsf{B}_{exp}(B^+ \to \pi^- \mu^+ \mu^+) < 1.4 \times 10^{-6}$$

 \bullet Heavy Majorana neutrino N in the range of masses \sim MeV up to 100 GeV

Intermediate state at low energy LNV processes.

 $\Delta L = 2 \ \mbox{PROCESSES AND THE RESONANT MECHANISM} \\ SEMILEPTONIC FOUR-BODY DECAYS CONCLUSIONS \\ CONCLUSIONS$

< 17 ▶

∃ ► < ∃ ►</p>

Direct bounds on $\langle m_{\ell_1\ell_2} angle$

Experimental Limits

▲
$$K^{\pm} \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm} \longrightarrow \langle m_{\mu\mu} \rangle < 4 \times 10^4 \text{ MeV}$$

Zuber, Phys. Lett. B 479, 33 (2000)

•
$$\mu^- + (Z, A) \to e^+ + (A, Z - 2) \longrightarrow \langle m_{e\mu} \rangle < 17(82) \text{ MeV}$$

Domin, Kovalenko, Faessler, & Simkovic, Phys. Rev. C 70, 065501 (2004)

▲
$$M_1^+ \to e^+ \mu^+ (e^+ \tau^+) M_2^- \longrightarrow (m_{e\tau}), \ \langle m_{\mu\tau} \rangle \le (10 - 100) \text{ TeV}$$

Atre, Barger & Han, Phys. Rev. D 71, 113014 (2005)

$$\langle m_{\mu\mu} \rangle \lesssim 0.14 \text{ eV} \implies \boxed{\mathcal{B}_{th}(B^+ \to \pi^- \mu^+ \mu^+) \sim 10^{-26}}$$
$$\mathsf{B}_{exp}(B^+ \to \pi^- \mu^+ \mu^+) < 1.4 \times 10^{-6}$$

- ${\scriptstyle \bullet}\,$ Heavy Majorana neutrino N in the range of masses \sim MeV up to 100 GeV
- Intermediate state at low energy LNV processes.

Heavy Neutrino Mixing General amplitude Resonant Mechanism in charged pseudoscalar mesons

Resonant Mechanism in charged pseudoscalar mesons

$$M_1^+ \to \ell_1^+ \ell_2^+ M_2^- \quad (\ell, \ell_1, \ell_2 = e, \mu)$$

The dynamic of this process is given by: $\mathcal{M} \sim G_F^2 V_{\ell_1 N} V_{\ell_2 N} m_N V_{M_1}^{\rm CKM} V_{M_2}^{\rm CKM} f_{M_1} f_{M_2}$

Table I. Experimental upper bounds (BABAR,Belle, CLEO, K experiments)

Decay mode	\mathcal{B}_{exp}
$K^+ \to \pi^- e^+ e^+$	$6,4 \times 10^{-10}$
$K^+ \to \pi^- \mu^+ \mu^+$	$3,0 \times 10^{-9}$
$K^+ \to \pi^- e^+ \mu^+$	$5,0 \times 10^{-10}$
$D^+ \to \pi^- e^+ e^+$	$9,6 \times 10^{-5}$
$D^+ \to \pi^- \mu^+ \mu^+$	$4,8 \times 10^{-6}$
$D^+ \to \pi^- e^+ \mu^+$	$5,0 \times 10^{-5}$
$D^+ \rightarrow K^- e^+ e^+$	$1,2 \times 10^{-4}$
$D^+ \to K^- \mu^+ \mu^+$	$1,3 \times 10^{-5}$
$D^+ \to K^- e^+ \mu^+$	$1,3 \times 10^{-4}$
$B^+ \to \pi^- e^+ e^+$	$1,6 \times 10^{-6}$
$B^+ \to \pi^- \mu^+ \mu^+$	$1,4 \times 10^{-6}$
$B^+ \to \pi^- e^+ \mu^+$	$1,3 \times 10^{-6}$
$B^+ \rightarrow K^- e^+ e^+$	$1,0 \times 10^{-6}$
$B^+ \to K^- \mu^+ \mu^+$	$1,8 \times 10^{-6}$
$B^+ \to K^- e^+ \mu^+$	$2,0 \times 10^{-6}$

< A

글 > : < 글 >

э

Heavy Neutrino Mixing General amplitude Resonant Mechanism in charged pseudoscalar mesons

Resonant Mechanism in charged pseudoscalar mesons

Atre, Han, Pascoli, & Zhang, JHEP 0905, 030 (2009)

$\underset{\text{LNV } t}{\text{LNV }} \bar{B}^0 \xrightarrow{D} {}_{\ell} \ell^{-} \ell^{-} \pi^{+} \underset{\text{DECAYS}}{\text{DECAYS}}$

A B M A B M

- T

3

OUTLINE

INTRODUCTION

(2) $\Delta L = 2$ **PROCESSES AND THE RESONANT MECHANISM**

- Heavy Neutrino Mixing
- General amplitude
- Resonant Mechanism in charged pseudoscalar mesons

SEMILEPTONIC FOUR-BODY DECAYS • LNV $\bar{B}^0 \rightarrow D^+ \ell^- \ell^- \pi^+$ DECAYS • LNV $t \rightarrow b \ell^+ \ell^+ W^-$ DECAYS

 $\underset{\text{LNV } t \rightarrow b\ell^+\ell^-\ell^-\pi^+ \text{ decays} }{\overset{\text{LNV } t \rightarrow b\ell^+\ell^+\ell^-}{\overset{\text{}}{W^-}} \underset{\text{decays} }{\overset{\text{}}{\text{decays}} }$

LNV $\bar{B}^0 \rightarrow D^+ \ell^- \ell^- \pi^+$ **DECAYS**

LNV Decay: $\bar{B}^0(p) \to D^+(p_1)\ell^-(p_2)\ell^-(p_3)\pi^+(p_4)$

Diagram (b) is suppressed with respect to diagram (a)

$$\frac{|V_{ub}V_{cd}|}{|V_{cb}V_{ud}|}\sim 0.02$$

In the range of neutrino masses m_N where the resonance effects dominate the decay amplitude, the diagrams (c) and (d) will give very small contributions.

Ivanov & Kovalenko, Phys. Rev. D **71**, 053004 (2005).

< ∃ >

3

Feynman diagrams for the LNV four-body decay of neutral B meson.

 $\underset{\text{LNV } t \rightarrow b \ell^+ \ell^+ \psi^-}{\text{LNV } t \rightarrow b \ell^+ \ell^+ \psi^-} \underset{W^- \text{ decays}}{\overset{H^+ \ell^+ \psi^-}{\text{ decays}}}$

LNV $\bar{B}^0 \rightarrow D^+ \ell^- \ell^- \pi^+$ DECAYS

The decay amplitude

$$\mathcal{L}^{\mu\nu} = \bar{u}_{\ell}(p_2) \left(\frac{\gamma^{\mu} \gamma^{\nu}}{a_1 + ib} + \frac{\gamma^{\nu} \gamma^{\mu}}{a_2 + ib} \right) P_R u_{\ell}^c(p_3)$$
$$a_1 \equiv q^2 - m_N^2, \ a_2 \equiv \tilde{q}^2 - m_N^2, \ b \equiv \Gamma_N m_N$$

Hadronic current H^1_μ

$$H_{\mu}^{1} = \langle D(p_{1}) | \bar{c} \gamma_{\mu} b | B(p) \rangle$$

= $\left[(p+p_{1})_{\mu} - \frac{(m_{B}^{2} - m_{D}^{2})}{Q^{2}} Q_{\mu} \right] F_{1}(Q^{2}) + \left[\frac{(m_{B}^{2} - m_{D}^{2})}{Q^{2}} \right] Q_{\mu} F_{0}(Q^{2}).$

Hadronic current H^2_ν

$$H_{\nu}^2 = \langle \pi(p_4) | \bar{d} \gamma_{\nu} \gamma_5 u | 0 \rangle = i f_{\pi}(p_4)_{\nu}, \quad f_{\pi} = 130,4 \text{ MeV}$$

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ のへぐ

 $\underset{\text{LNV } t \rightarrow b \ell^+ \ell^+ \psi^-}{\text{LNV } t \rightarrow b \ell^+ \ell^+ \psi^-} \underset{W^- \text{ decays}}{\overset{H^+ \ell^+ \psi^-}{\text{ decays}}}$

LNV $\bar{B}^0 \rightarrow D^+ \ell^- \ell^- \pi^+$ DECAYS

The decay amplitude

$$\mathcal{L}^{\mu\nu} = \bar{u}_{\ell}(p_2) \left(\frac{\gamma^{\mu} \gamma^{\nu}}{a_1 + ib} + \frac{\gamma^{\nu} \gamma^{\mu}}{a_2 + ib} \right) P_R u_{\ell}^c(p_3)$$
$$a_1 \equiv q^2 - m_N^2, \ a_2 \equiv \tilde{q}^2 - m_N^2, \ b \equiv \Gamma_N m_N$$

Hadronic current H^1_{μ}

$$\begin{aligned} H^{1}_{\mu} &= \langle D(p_{1}) | \bar{c} \gamma_{\mu} b | B(p) \rangle \\ &= \left[(p+p_{1})_{\mu} - \frac{(m_{B}^{2} - m_{D}^{2})}{Q^{2}} Q_{\mu} \right] F_{1}(Q^{2}) + \left[\frac{(m_{B}^{2} - m_{D}^{2})}{Q^{2}} \right] Q_{\mu} F_{0}(Q^{2}). \end{aligned}$$

Hadronic current H^2_{ν}

$$H_{\nu}^2 = \langle \pi(p_4) | \bar{d} \gamma_{\nu} \gamma_5 u | 0 \rangle = i f_{\pi}(p_4)_{\nu}.$$
 $f_{\pi} = 130,4 \text{ MeV}$

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ のへぐ

 $\underset{\text{LNV } t \rightarrow b\ell^+\ell^-\ell^-\pi^+ \text{ decays}}{\overset{\text{D}}{\underset{\text{LNV } t \rightarrow b\ell^+\ell^+\psi^-}} } \overset{\text{D}}{\underset{\text{decays}}{\overset{\text{decays}}{\underset{\text{decays}}{\overset{\text{decays}}{\underset{\text{decays}}{\overset{\text{decays}}{\underset{\text{decays}}{\overset{\text{decays}}{\underset{\text{decays}}{\overset{\text{decays}}{\underset{\text{decays}}{\overset{\text{decays}}{\underset{\text{decays}}{\overset{\text{decays}}{\underset{\text{decays}}{\overset{\text{decays}}{\underset{\text{decays}}{\overset{\text{decays}}{\underset{\text{decays}}{\overset{\text{decays}}{\underset{\text{decays}}{\overset{\text{decays}}{\underset{decays}}{\overset{\text{decays}}{\underset{decays}}{\overset{\text{decays}}{\underset{decays}}{\overset{\text{decays}}{\underset{decays}}{\overset{decays}}}{\overset{decays}}{\overset{decays}}{\overset{decays}}{\overset{decays}}{\overset{decays}}{\overset{decays}}{\overset{decays}}{\overset{decays}}{\overset{decays}}{\overset{decays}}{\overset{decays}}}{\overset{decays}}{\overset{decays}}{\overset{decays}}{\overset{decays}}{\overset{decays}}{\overset{decays}}{\overset{decays}}}{\overset{decays}}{\overset{decays}}{\overset{decays}}{\overset{decays}}{\overset{decays}}{\overset{decays}}}{\overset{decays}}{\overset{decays}}{\overset{decays}}{\overset{decays}}{\overset{decays}}{\overset{decays}}{\overset{decays}}}{\overset{decays}}{\overset{decays}}{\overset{decays}}{\overset{decays}}{\overset{decays}}}{\overset{decays}}{\overset{decays}}{\overset{decay$

LNV $\bar{B}^0 \rightarrow D^+ \ell^- \ell^- \pi^+$ DECAYS

Resonant Region: $(m_{\pi} + m_{\ell}) \leq m_N \leq (m_B - m_D - m_{\ell}).$

Fig. I Decay width of heavy neutrino for $m_N \ll m_W$.

3

 $\underset{\text{LNV } t \rightarrow b\ell^+\ell^-\ell^-\pi^+ \text{ decays} }{\overset{\text{LNV } t \rightarrow b\ell^+\ell^+\ell^-W^- \text{ decays} }$

LNV $\bar{B}^0 \rightarrow D^+ \ell^- \ell^- \pi^+$ DECAYS

Narrow width approximation (NWA)

$$\int \frac{G(s_{34}) \, ds_{34}}{(s_{34} - m_N^2)^2 + \Gamma_N^2 m_N^2} \bigg|_{\Gamma_N \to 0} = \frac{\pi}{\Gamma_N m_N} \int G(s_{34}) \, \delta(s_{34} - m_N^2) \, ds_{34},$$
$$= \frac{G(m_N^2)\pi}{\Gamma_N m_N}.$$

Atre, Han, Pascoli, & Zhang, JHEP 0905, 030 (2009)

The decay width

$$\begin{split} \Gamma_B^{D\ell\ell\pi} &\equiv \Gamma(\bar{B}^0 \to D^+ \ell^- \ell^- \pi^+), \\ &= \frac{1}{8(4\pi)^6 m_B^3} \Big[\int f_1^B d\Phi_1 + \int f_2^B d\Phi_2 \Big]. \\ & \boxed{\mathcal{B}_B^{D\ell\ell\pi} = \tau_{B^0} \Gamma_B^{D\ell\ell\pi}} \end{split}$$

Kinematic variables $\{s_{12}, s_{34}, \theta_1, \theta_3, \phi\}$

 $\underset{\text{LNV } t \rightarrow b \ell^+ \ell^- \psi^- \pi^+ \text{ decays} }{\underset{\text{LNV } t \rightarrow b \ell^+ \ell^+ \psi^- \text{ decays} } }$

LNV $\bar{B}^0 \rightarrow D^+ \ell^- \ell^- \pi^+$ DECAYS

Heavy neutrino mixing : $||V_{eN}|^2 < 3 \times 10^{-3}, ||V_{\mu N}|^2 < 3 \times 10^{-3}, ||V_{\tau N}|^2 < 6 \times 10^{-3}$

del Aguila, de Blas, & Perez-Victoria, Phys. Rev. D 78, 013010 (2008).

Fig. II. Branching ratios as function of m_N . The WSB model is used to evaluate the form factors of $B \rightarrow D$. [Wirbel, Stech, & Bauer, Z. Phys. C 29, 637 (1985)]

 $\underset{\text{LNV } t \rightarrow b\ell^+\ell^-\ell^-\pi^+ \text{ decays}}{\overset{\text{D}}{\underset{\text{LNV } t \rightarrow b\ell^+\ell^+\psi^-}} } \overset{\text{D}}{\underset{\text{decays}}{\overset{\text{decays}}{\underset{\text{decays}}{\overset{\text{decays}}{\underset{\text{decays}}{\overset{\text{decays}}{\underset{\text{decays}}{\overset{\text{decays}}{\underset{\text{decays}}{\overset{\text{decays}}{\underset{\text{decays}}{\overset{\text{decays}}{\underset{\text{decays}}{\overset{\text{decays}}{\underset{\text{decays}}{\overset{\text{decays}}{\underset{\text{decays}}{\overset{\text{decays}}{\underset{\text{decays}}{\overset{\text{decays}}{\underset{\text{decays}}{\overset{\text{decays}}{\underset{decays}}{\overset{\text{decays}}{\underset{decays}}{\overset{\text{decays}}{\underset{decays}}{\overset{\text{decays}}{\underset{decays}}{\overset{decays}}}{\overset{decays}}{\overset{decays}}{\overset{decays}}{\overset{decays}}{\overset{decays}}{\overset{decays}}{\overset{decays}}{\overset{decays}}{\overset{decays}}{\overset{decays}}{\overset{decays}}}{\overset{decays}}{\overset{decays}}{\overset{decays}}{\overset{decays}}{\overset{decays}}{\overset{decays}}{\overset{decays}}}{\overset{decays}}{\overset{decays}}{\overset{decays}}{\overset{decays}}{\overset{decays}}{\overset{decays}}}{\overset{decays}}{\overset{decays}}{\overset{decays}}{\overset{decays}}{\overset{decays}}{\overset{decays}}{\overset{decays}}}{\overset{decays}}{\overset{decays}}{\overset{decays}}{\overset{decays}}{\overset{decays}}}{\overset{decays}}{\overset{decays}}{\overset{decay$

LNV $\bar{B}^0 \rightarrow D^+ \ell^- \ell^- \pi^+$ DECAYS

Tabla II. Branching ratios for $\bar{B}^0 \to D^+ \ell^- \ell^- \pi^+$ decays.

(WSB Model) Wirbel, Stech, & Bauer, Z. Phys. C 29, 637 (1985) (CLF Model) Cheng, Chua, & Hwang, Phys. Rev. D 69, 074025 (2004)

	e^-e^-			$\mu^-\mu^-$	
$m_N~({ m MeV})$	WSB	CLF	$m_N~({\sf MeV})$	WSB	CLF
170	2.6×10^{-6}	3.4×10^{-6}	250	3.0×10^{-7}	3.9×10^{-7}
190	2.8×10^{-6}	3.6×10^{-6}	270	4.1×10^{-7}	5.4×10^{-7}
200	2.6×10^{-6}	3.4×10^{-6}	300	3.4×10^{-7}	4.3×10^{-7}
220	1.5×10^{-6}	2.0×10^{-6}	400	1.4×10^{-7}	1.9×10^{-7}
250	7.3×10^{-7}	9.7×10^{-7}	500	7.0×10^{-8}	1.0×10^{-7}
300	2.5×10^{-7}	3.3×10^{-7}	600	4.0×10^{-8}	6.0×10^{-8}

Delepine, López Castro, & Quintero, arXiv:1108.6009

 $\underset{\text{LNV } t \rightarrow b\ell}{\overset{B^0}{\to} } \overset{D^+\ell^-\ell^-\pi^+}{\xrightarrow{}} \underset{\text{DECAYS}}{\overset{\text{Decays}}{\to} }$

LNV $t \rightarrow b\ell^+\ell^+W^-$ **DECAYS**

LNV Decay:

 $t(p) \to b(p_1)\ell^+(p_2)\ell^+(p_3)W^-(p_4)$

Tabla VI. Branching ratios (units of 10^{-6}) for $t \to b \ell^+ \ell^+ W^-$ decays.

$m_N~({ m GeV})$	ee	$\mu\mu$	au au
90	0.29	0.29	1.12
100	0.12	0.12	0.47
110	0.05	0.05	0.19

Delepine, López Castro, & Quintero, arXiv:1108.6009

3

Bar-Shalom *et al*, Phys. Lett. B **643**, 342 (2006)

OUTLINE

INTRODUCTION

2 $\Delta L = 2$ **PROCESSES AND THE RESONANT MECHANISM**

- Heavy Neutrino Mixing
- General amplitude
- Resonant Mechanism in charged pseudoscalar mesons

SEMILEPTONIC FOUR-BODY DECAYS • LNV $\bar{B}^0 \rightarrow D^+ \ell^- \ell^- \pi^+$ DECAYS • LNV $t \rightarrow b \ell^+ \ell^+ W^-$ DECAYS

CONCLUSIONS

3

CONCLUSIONS

In this work we have studied the effects of heavy Majorana neutrinos in semileptonic decays of neutral ${\cal B}$ meson:

$$\bar{B}^0 \to D^+ \ell^- \ell^- \pi^+ \qquad t \to b \ell^+ \ell^+ W^-$$

 \bullet Assumed the dominance of only one heavy neutrino N that falls in the resonant region.

CONCLUSIONS

In this work we have studied the effects of heavy Majorana neutrinos in semileptonic decays of neutral ${\cal B}$ meson:

$$\bar{B}^0 \to D^+ \ell^- \ell^- \pi^+ \qquad t \to b \ell^+ \ell^+ W^-$$

 \bullet Assumed the dominance of only one heavy neutrino N that falls in the resonant region.

 \bullet We have calculated numerically the enhanced branching ratios as function of the mass $m_N.$

CONCLUSIONS

In this work we have studied the effects of heavy Majorana neutrinos in semileptonic decays of neutral ${\cal B}$ meson:

$$\bar{B}^0 \to D^+ \ell^- \ell^- \pi^+ \qquad t \to b \ell^+ \ell^+ W^-$$

- \bullet Assumed the dominance of only one heavy neutrino N that falls in the resonant region.
- \bullet We have calculated numerically the enhanced branching ratios as function of the mass $m_N.$
- We have found that the most optimistic branching ratios are of the order $10^{-6} 10^{-7}$.

CONCLUSIONS

In this work we have studied the effects of heavy Majorana neutrinos in semileptonic decays of neutral ${\cal B}$ meson:

$$\bar{B}^0 \to D^+ \ell^- \ell^- \pi^+ \qquad t \to b \ell^+ \ell^+ W^-$$

- \bullet Assumed the dominance of only one heavy neutrino N that falls in the resonant region.
- \bullet We have calculated numerically the enhanced branching ratios as function of the mass $m_N.$
- We have found that the most optimistic branching ratios are of the order $10^{-6}-10^{-7}.\,$
- Experimental sensitivity
 - $\blacktriangle \text{ BABAR} \sim 450 \times 10^6 \ B\bar{B}$
 - $\blacktriangle \ \bar{B}^0 \to D^+ \ell^- \ell^- \pi^+ (D^+ \to K^- \pi^+ \pi^+)$
 - \blacktriangle 70 % efficiency for the identification and reconstruction of each of the six charged tracks

$$\mathcal{B}(\bar{B}^0 \to D^+ \ell^- \ell^- \pi^+) \sim 2.0 \times 10^{-7}.$$

▲ LHCb, Super-KEKB, Super-B factories

CONCLUSIONS

In this work we have studied the effects of heavy Majorana neutrinos in semileptonic decays of neutral ${\cal B}$ meson:

$$\bar{B}^0 \to D^+ \ell^- \ell^- \pi^+ \qquad t \to b \ell^+ \ell^+ W^-$$

- \bullet Assumed the dominance of only one heavy neutrino N that falls in the resonant region.
- \bullet We have calculated numerically the enhanced branching ratios as function of the mass $m_N.$
- We have found that the most optimistic branching ratios are of the order $10^{-6}-10^{-7}.\,$
- Experimental sensitivity
 - ▲ BABAR ~ $450 \times 10^6 \ B\bar{B}$
 - $\blacktriangle \ \bar{B}^0 \to D^+ \ell^- \ell^- \pi^+ (D^+ \to K^- \pi^+ \pi^+)$
 - ▲ 70% efficiency for the identification and reconstruction of each of the six charged tracks

$$\mathcal{B}(\bar{B}^0 \to D^+ \ell^- \ell^- \pi^+) \sim 2.0 \times 10^{-7}.$$

▲ LHCb, Super-KEKB, Super-B factories

 $\Delta L = 2 \ {\rm PROCESSES} \ {\rm AND} \ {\rm THE} \ {\rm RESONANT} \ {\rm MECHANISM} \\ {\rm SEMILEPTONIC} \ {\rm FOUR-BODY} \ {\rm DECAYS} \\ {\rm CONCLUSIONS} \ {\rm CONCLUSI$

THANK YOU !!

Néstor Quintero Poveda - CINVESTAV XIII Mexican Workshop on Particles and Fields

<ロ> <同> <同> < 回> < 回>

Э.

 $\Delta L = 2 \mbox{ PROCESSES AND THE RESONANT MECHANISM SEMILEPTONIC FOUR-BODY DECAYS CONCLUSIONS } \label{eq:Lambda}$

LNV $t \rightarrow b\ell^+\ell^+W^-$ DECAYS

LNV Decay:

$$t(p) \to b(p_1)\ell^+(p_2)\ell^+(p_3)W^-(p_4)$$

The decay amplitude

$$\mathcal{M} = \frac{G_F m_W^2}{\sqrt{2}} \left(\frac{g}{\sqrt{2}}\right) V_{tb} |V_{\ell N}|^2 \ m_N H_\mu^{t \to b} \mathcal{L}^{\mu\nu} \varepsilon_\nu^*$$

Weak transition $t \rightarrow b$

$$H^{t \to b}_{\mu} = \bar{u}_t(p_1)\gamma^{\sigma}(1-\gamma_5)u_b(p)\Pi^W_{\sigma\mu}.$$

The W boson propagator

$$\Pi^W_{\sigma\mu} = \left[-g_{\sigma\mu} + \frac{Q_{\sigma}Q_{\mu}}{m_W^2} \right] \frac{i}{(Q^2 - m_W^2) + i\Gamma_W m_W}.$$

▲圖▶ ▲理▶ ▲理▶

æ

$$\mathcal{M} = i \Big(\frac{G_F m_W^2 g}{2} \Big) V_{tb} |V_{\ell N}|^2 m_N \ \bar{u}_\ell(p_2) \Big(\frac{\# \not \!\!\!/}{a_1 + ib} + \frac{\not \!\!/}{a_2 + ib} \Big) P_R u_\ell^c(p_3).$$

 $\Delta L = 2 \ {\rm PROCESSES} \ {\rm AND} \ {\rm THE} \ {\rm RESONANT} \ {\rm MECHANISM} \\ {\rm SEMILEPTONIC} \ {\rm FOUR-BODY} \ {\rm DECAYS} \\ {\rm CONCLUSIONS} \\ \end{array}$

LNV $t \rightarrow b\ell^+\ell^+W^-$ **DECAYS**

The decay width

$$\begin{split} \Gamma^{b\ell\ell W}_t &\equiv \Gamma(t \to b\ell^+ \ell^+ W^-), \\ &= \frac{1}{8(4\pi)^6 m_t^3} \Big[\int f_1^t d\Phi_1 + \int f_2^t d\Phi_2 \Big]. \\ & \boxed{\mathcal{B}^{b\ell\ell W}_t = \Gamma^{b\ell\ell W}_t / \Gamma_t} \end{split}$$

Phase space factors

 $d\Phi_1 = X\beta_{12}\beta_{34} \, ds_{34} ds_{12} d\cos\theta_1 d\cos\theta_3 d\phi,$ $d\Phi_2 = d\Phi_1 (p_2 \leftrightarrow p_3).$

Kinematicall variables $\{s_{12}, s_{34}, \theta_1, \theta_3, \phi\}$

Kinematicall region: $m_N > m_W$ $\Gamma_N \sim (10^{-2} - 10) \ {\rm GeV}$

LNV $t \rightarrow b\ell^+\ell^+W^-$ DECAYS

Resonant Region:
$$(m_W + m_\ell) \le m_N \le (m_t - m_b - m_\ell)$$

Fig. III Normalized branching ratio of $t \to b \ell^+ \ell^+ W^-$ decays as a function of m_N .

글 🕨 🛛 글

 $\Delta L = 2 \ {\rm PROCESSES} \ {\rm AND} \ {\rm THE} \ {\rm RESONANT} \ {\rm MECHANISM} \\ {\rm SEMILEPTONIC} \ {\rm FOUR-BODY} \ {\rm DECAYS} \\ {\rm CONCLUSIONS} \ {\rm CONCUSIONS} \ {\rm CONCUSIONS} \ {\rm CONCUSIONS$

LNV $t \rightarrow b\ell^+\ell^+W^-$ DECAYS

Tabla VI. Branching ratios (units of 10^{-6}) for $t \to b \ell^+ \ell^+ W^-$ decays.

		Set I	
m_N (GeV)	ee	$\mu\mu$	au au
90	0.29	0.29	1.12
100	0.12	0.12	0.47
110	0.05	0.05	0.19
		Set II	
m_N (GeV)	ee	$\mu\mu$	au au
90	1.48 (1.4)	0.95 (1.1)	2.55 (1.9)
100	0.6 (0.6)	0.4 (0.5)	1.08 (0.8)

Bar-Shalom et al, Phys. Lett. B 643, 342 (2006) Delepine, López Castro, & Quintero, arXiv:1108.6009

3