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Brief Historical Review of Second Order
Formalisms for spin 1/2

P (1927) V. Fock, Relativistic Quantum Mechanics of spin 1/2 through a second order
differential equation.

» (1928) Dirac, P. A. M.

> (1951,1958) Feynman - Gell-Mann! used a two component spinorial field that satisfies
(g=2,£=0).

(10 — A)? + & (B iB)|p = m,

Their main motivation was to describe the weak interactions.

> ..

» (1961) Hebert Pietschmann?, one loop renormalization of the Feynman-Gell-Mann
theory.

Showing the equivalence with the Dirac framework has been always a goal in these works.

1Phys. Rev. 84, 108, 1951; Phys. Rev. 109, 193, 1958
ZActa Phys. Austr. 14, 63 (1961)
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Motivations

» The NKR second order formalism for massive spin 3/2 particles is an
alternative® to the inconsistent Rarita-Schwinger theory of electromagnetic
interactions.

» The case of spin 1/2 is interest by itself e.g. in this theory the gyromagnetic
factor g is a free parameter = a low energy effective theory of particles with
g # 2, e. g. proton.

> We expect that this give us a better understanding of the properties of spin 1/2
particles, e.g. the classical limit*.

» ;Generalizations?
In this work we used general principles of QFT to study the quantization and

Renormalization. We will only compare with the conventional Dirac results only at
the end.

3Eur. Phys. J. A29 (2006); Phys. Rev. D77: 014009, 2008
“R. P. Feynman Phys. Rev. 84, 108 , 1951.
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Quantum Fields

Quantum theories that satisfy
» special relativity
» cluster descomposition principle

can be built with quantum fields ¢;(x) defined as
i(x) = / dr [ (D)a’ (1) + e~ v (D)a(I)],
such that under a Poincaré transformation U (A, b) the fields
U(A,b)i(2)U(A,b) ™ = D(A)w ¢ (Az +),

[¢1(), dm()]z =0 for (z—1)* >0,

where D(A);;/ is a representation of SO(3,1).
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oo S B B
Scheme of the NKR construction of QFTs

Spacetime Symmetries
of Fields ¢(z)

Second Order
Equations of Motion
[TH 0,0, + ..]¢ =0

Lagrangian L[¢, d¢]
Noether: Poincaré Scalar

Hermitian

Interactions: Minimal Coupling
L[$,0¢] — L[p, Do, A]

— 7137



Equations of motion of the NKR formalism

. . . . 2 -2 .
General Idea: To use the Poincare invariants P° and W~ to construct projectors
- ,8) - ~ . . . . -
P™) over spaces of definite mass and spin. Acting these projectos on the fields
results in equations of motion.

For a field ¢<D‘m’s) with only one spin sector s in a given representations D(A) only
a projector is necessary P™°

P = () (ﬁ),

the action of this projector over the field results in the following equation of motion
(TZ?MVPHPV . 6”,m2)wl(lD,m,S)(m) =0,

1

WTD“ Y P, P,, it depends on the

where T;)"" is defined by W? = —
generators M*” of the D(A).
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NKR for spin 1/2 and the representations

(1/2,0) @ (0,1/2)

For a field 1”>"™*=1/2) in the representation D = (1/2,0) & (0, 1/2) the NKR
equation of motion can be deduced from the following family of hermitian
Poincaré scalar Lagrangians

L = 0T 0,9p — m*pip,
where TH" = g" — igM™ + £4° M*".

M"” are the generators of the (1/2,0) ¢ (0, 1/2) Lorentz group representation.

MH 0 1 0
me — ( Mayzo ) = ( .
< 0 M.)2) K 0 -1
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Electromagnetics Interactions

Finally we introduce Electromagnetic interactions are introduced through minimal
coupling

1 v 7 v - v 7
& = = F" Fu + Duilg"” = (ig — €4°) M| Dyip — m* ),
g = 2,& = 0 corresponds to the Feynman-Gell-Mann theory.

The interactions that contains g can be rewritten as
4 _
Y= —/d zeg YM" PF,,,

that includes the interaction S - B = we recognize g as the gyromagnetic factor.
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Feynman Rules

2, m) = C / DADYDpexp [z / Lefdx],

1 1 . . o
L= = " Fuy = 5= (0pA") + Dy T Dyt — m* i + " Ay 70 +
iS(p) = s iy = o
q, © 12
P ' P '
(0 = p)"] 2ie?gh

—ieVu(p,p') = —ie () + p)u + (ig + €7°) M,
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QFT and NKR formalism Renormalization Conclusions

Ward Identities

As a consequence of gauge invariance there exist identities between the green
functions

1 0 0
= | - =0 _ Ho_ A VA [ 7
0= [~ 0@ gy) = 0" = ey + 0505|2670 )
I
-1 -1
k¥ = -
pﬂr(. P .
P Pk
kK Fepp) = 57 (p+ki - 571 pj
v v
K., v
% = =
P P pe PP p-k

k A¥p.p) Feipip+k) - FY(p=k,p)

L — 13/37
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QFT and NKR formalism Quantization

Conclusion

Divergencies in the Second Order Theory

Asking the Lagrangian to be dimensionless one obtains
> Al =[] =1,
> [gl =[] =[¢] =0.
Thus the greater superficial degree of divergency of a process is
D<4—-F-P

The greater degree of divergency is:
» quadratic for propagators
» linear for 3 lines processes e.g. f fp
» logarithmic for 4 lines processes e.g. f fpp
These characteristics are necessary for a theory to be renormalizable QFT.
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Free Parameters and Counterterms (£ = 0)

In terms of the bare parameters mg, ey, gp the Lagrangian is

1 . - v . v . -
Y = 7ZF’“’F;W + (O — iep Ap)[gh” —igy MHY](0y + iep Au)y — mgww.

Introducing the renormalized parameters m?2, e y g and the renormalized fields

_1 _1
Al =7, 2 A¥ y 4, = Z, * 1 there appear the following counterterms

p ) q v
EE e— ANNANNN
(2 25 — b i #V27MV6
i(p* —m?)dz, — i0m i(g"q* — ¢"q")0z
q, b 12 12
P ' P '
—ie [V“(p/,p)] de + egMuv(p, - p)yég 2i629uv53

— 16/37



Dimensional Regularization

Extend the theory to d dimensions. The natural objects to be extended to d dimension
are the Lorentz generators M"”

[MF M"Y ] = —igh M 4 ig" M — ig™* M™ +ig® MP*| with ¢, = d
(M, M7} = S(g"°g"" = g"7g"%) = 5

e.g. we can use the last expression to calculate to calculate a trace in a fermion loop

tr{M" M7} = Lid) (9"g"7 — g"7¢"*) with lim f(d) = 4,

B ) 17/37



QT NKR Gt Quntaaion (oo Comluons
Photon Propagator

As usual one can express the complete photon propagator iAL” (g) as

W\'WZV\,\N

iAC"(q) = 1A (q) + 1A [=illop()][IA™ ()] + ..
where I1"”(q) is the vacuum polarization
1" (q) = (¢*g"" = ¢"¢")m(q”),
Then the complete propagator is given by
y % + KoV 2
Aw(g) = —9 T 0 /4
[¢* + i€][1 + 7]

The first condition of renormalization is that the photon doesn’t acquired mass due to
the radiative corrections, i.e.

n(¢> — 0) = 0.
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Vacuum polarization to one loop

It has the following contributions
(a2 o v 2__~uu2_pu*2_-;u/2_pl/6
i(g"q” = ¢"q")m(a)” = —i(¢""q" — ¢"q")7"(¢7) — i(9""q" — ¢"q")dz,
The first renormalization conditions requires

8z, = —m"(q° = 0),

q, q,v

Finally, imposing the renormalization condition the physical vacuum polarization is

(g = 2¢ /01 dzln {%’M} {(1 —om)? - %} ,

(4m)2 m

for g = 2 one recovers the one loop vacuum polarization of the conventional Dirac formalism.
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Charge running in the Ultrarelativistic limit

Due to the quantum effects the classical Coulomb potential modifies as

o d*q (id7 —e?
v = [ @’ P AT

in the ultrarelativistic domain one has an effective charge given by

2

2 2 2
2 & _ 2 € _3n_ 9 —4
eeff—l—i—71'(q2 >>m2)_e/[ 127r2(1 g 4])1nAm2]’

51— 21— —]
where A = exp —_—==
31-3[1- 2]
Which means that the gyromagnetic factor g impacts the running of the fine structure
constant ar(¢?)!
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Fermion Propagator

Analogously the complete fermion propagator .S (p) could be expressed as
iSe(p) = iS(p) + 1S(p)[-1X(p)]iS (p) +
where —iX(p2) is the fermion self energy. Adding up the series

1
p? —m? — X(p) +ie’

Se(p) =

Second renormalization condition: m lk,plLst,lltS the ph\ ysical mass of the particle, i.e
the complete propagator has a simple pole at p*> = m>

0%(p)

E(p = mQ) =0, o2 |p2:m2

=0.
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Fermion Self Energy to one loop

The contributions up to one loop are
—i%(p?) = —i%(p*) +i(p® —m*)dz, — i6m,

The second renormalization conditions requires

. - X" (p
’L(sm = —i% (p2 = m2) 6Z2 = T(Z)‘pzzn'ﬂ’
l
1 2 2 1
2y _ Q@ 9 B m’z —p z(l —z)| 3am Qg o dz
E(p)—ﬂp /0 dz(z l)ln[ 2 ] o 7r[p m”] o
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f fp Vertex

The contributions to the one particle irreducible f fp vertex T*(q = p’ — p,7» = p’ + p) are

—iel't (p',p) = —ieV*(p', p) — iel™*(p', p) — ieV*(p', p)de — ie[igMu (p" — p)¥1dg,

q; p
l l
P /
I+p rp +p L+
D " p ' p /

Evaluating on mass shell

1 2 d
*F(p? =p? =m?,¢>=0) = © {[72[77'y+ln47r}+21nm—74/—I]V“(r,q)
(4m)? € w? T
+[2+0 1L mar "'2]]‘ P < iguhe v
— —||= — 7 ndm —In ——||12 _ =1 T T .
4 12 g v (4mm)? g Al

There is a divergency for g # 2, this can only be removed assuming that the gyromagnetic
factor must be renormalized.

S —— 23/37



Renormalization of the f fp Vertex
The tensor decomposition of the sum of contributions is
—iel's(q,r) = — ieEg" — iefr* — ieGigM*"" q, — ieHigM""r,
— ieligM®*rgqar” — ieJigM"*rsqag"

Where E, F, ..., J are scalar functions.
The renormalization conditions over the f fp vertex are:

» ¢ is the electric charge on mass shell, this requires that the form factor F
satisfies

F(p® =p? =m?,¢> =0) =1,
» That the effective gyromagnetic factor on mass shell is equal to g plus a finite

correction Ag, this requires that the form factor G satisfies

9G(p* =p”,¢> =0) = g+ Ag,

O ——— 24/37



Renormalized f fp vertex

These renormalizations conditions determine the value of the remaining counterterms

e? 1 m? !
e = —=2(— — Indr) —2In — +4 d ,
J (4#)2[ (e v + In4n) n 2 + /0 x/x]
e 42 1 m?

the first expression implies e = vV Z1eq4.

Introducing these expressions one obtains the f fp vertex at arbitrary momentum

(g;7)
—iel's(q,r) = — ieEg" — ieFr* — ieGigM*"" q, — ieHigM""r,
— ieHigM’Barﬂqar” +J]igMBargqaq”
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Form Factors

1 1
1 Ai(p,ma?, A ma?,
F(T2,q2,r~q,m):l+i{/ dz(2—:v)[ln 1(p, ma z)-‘,-ln L, ma I)}
47 0 m?2 m?2
2
2 28 —1 1 2[2 — 21
+// dxdy2ln m a°[(% Yz +y) + 1+ r7[2(z +y) — (z+y) ]
Aa(q,r,m, z,y) Ao (g, m,m, z,y)
r-q[y—x+x —y2] 4 ]}
As(g,r,m, ,y) (z + )2
e Ai(g,m, )
G 2’ 2’ . q, =1 el / d 97,11 219 mE)
*atream =14 —{ [Tde(Co ~ 1) 2
1
1 Aq (LD 2, Aq (LT, 3 1-z 4dyd
+/ dxx[ln (5=, ma w)+1n 1(45—, ma x) / / x ydx
0 m?2 m?2 (z + )2
11— 2 _1 1—- 9 . _ 2
N e — Ml CE LR (et G TR R 1Y
o Jo Az(g,m,m, @, y) Az(g, T, m, T, y)
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Finite correction to the gyromagnetic factor

The effective gyromagnetic factor on mass shell is given by
—iel" = —ie[G(r* = 4m*,¢* =r - q = 0)igM""q,] + ...,
2 2 2 (0%
G(r*=4m,¢"=r-q=0)=1+ —.
2m

This equation shows that the finite correction to the gyromagnetic factor to one loop
is

A . «
for g = 2 this is just the the conventional result Ag = —!
m
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| CmelRGaTn Gt Cwwwew) @iy
f fpp Vertex

Calculating the f fpp vertex one observes that the divergencies are removed by the
past renormalization conditions

ik p+k—pv  pk p+k—pv  pk pt+k—pv
P +kﬂ\ﬁl\ﬂp’ PP+ 1y MM’
p+lp+1 p—k+1 +1 p+1
l l l
1k p+k—p,v 1k p+k—p,v 1,k p+k—p,v
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Perspectives

The rest of superficially divergent processes are (with 3 and 4 external lines)

A XX

These processes must be finite if the theory is renormalizable to one loop.

We expect that the first process to be zero due to charge conjugation symmetry.
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Conclusions

» We studied the one loop renormalization using path integral
quantization, obtaining the Feynman rules and showing the Ward
identities to all orders, they were verified to one loop.

» It was shown that the coupling constants are adimensional and that the
superficial degree of divergency of a given process is bounded by the
number of external lines.

» By imposing renormalization conditions (that identified the
renormalized couplings) it was shown that the divergencies
corresponding to the propagators, f fp and f fpp vertexes are removed
for all g.

» It is remarkable that the Dirac gamma matrixes " are not necessary
but natural objects are the Lorentz generators M*".
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Conclusions

» Vacuum polatizations to one loop: is gauge invariant, for g = 2 we
recover the conventional result. However in general it depends on g
which means that the running of the fine structure constant o(g?)
depends of it. The fermion self energy is independent of g at one loop
level.

» Divergencies corresponding to the f fp vertex for g # 2 are only
removed assuming that the gyromagnetic factor must be renormalized.

» The finite correction to the gyromagnetic factor which depends on g,
and in the case of g = 2 one recovers the correct Schwinger correction.
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Perspectives

» To finish the study of the one loop renormalization for 1/2,
» Tenormalization of the NKR formalism for spin 3/2.

> ;Generalizations?
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_QFTand NKRformalim  Quiaton  Reomalizion (Coluinn)
The Reduction Formula S

Consider the S matrix elements
(LK v . K 0 AP
Saﬁ - <k1/7 0175 -0y kn’?”'ﬂ’vﬂ? Out|p1 30155 Pmy Om; & ’L’Il>

reduction formulas allow us to simplify

1 1
Sap =27 ... 2 Z dxyr...dxm, [ull, (:L’l/,pll,dl/)...uln, (Tnrs Pty O’n/)]

Lily

<0|T(¢l1/ (’rlll )"'¢lm (-Tlm )) ‘O> [ull ('rhpl? Ul)"'ulm (‘T’mvpn’ ) O'm)}

> (0[T(¢r,, (w1, )1, (2, )1y (20y) -ty (22,))10).-
» ¢;(z;) with quantum numbers {p; , o;} corresponding to in or out,
» 7, field strength renormalization of &',

» w;(x;, pi, 0;) differential operators acting in ¢;(x;).

To study the renormalization we focus on calculating {0|T'(¢...)|0) .
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Free Parameters and Counterterms (£ = 0)

In terms of the bare parameters mg, eq, gq the Lagrangian is
1 . - . . -
Z = —ZFW”’FdW + (Op — iegAap)Palg"” — igaM*1(0y + ieqAgy)¥a — m3patq.

Introducing the renormalized parameters m%, er y gr and the renormalized fields
1 _1
Al =7, 2 Ay, = Z, 24 the Lagrangian is

1 1 1
L =— ZF#UFNLV - 5(8MAT#)2 - ZF#VF’I‘}LU(sZ] (auAmL)Q‘;Zl

1
2
+ 6M&r8u¢r - mz'&ﬂbr + [8%&7"8”7#7" - mzir'lﬂr]aZQ - 6m'&r¢r
- ier [irTruuauwr - au'[ZJrTruuwr]A: - ier [irTru,u,auwr - O‘LLQZ’I‘TT‘MV’L[J’I‘]AZ(SE
— der[Pr (—igr Mypu) 0" by — Hthr (—igr Myuw )by A¥Sg + e24bripr AL Ay,
+ ezqz)‘r‘erﬁArué&
where
521 EZ171 (5ZQEZ2*1 6mEZ2[m37m3],
1 1 2
bo=2727, -1 6,=L722,1% 1), 3= L7721
er er

gr e?

) 36/37



Dimensional Regulatization

‘We could use the conventional extension

{’7#7 ’YV} = g“” with g'U:u = d7
tr{y"} =0, trI =f(d) with lim f(d) =4,
M =i/Aly", 7).

but the gammas " are not necessary we could use instead only the Lorentz
generators M*""

(M M*) = —z‘gﬂ”M"‘“ +ig" M —ig®* MP 4 ig™ MP*, con ¢!, =
(MM, M7} = ( gt — ') — ;6””“’75 contry® =0,(7")* =1,
f(d)

trM* =0, tr{M"M*?} = 4 (g"*g"" — g"" g") con Cllfrrif(d) =4,
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