LHCb experiment: status and selected results

Érica Polycarpo

LAPE/Instituto de Física Universidade Federal do Rio de Janeiro On behalf of the LHCb Collaboration

E. Polycarpo (LAPE/IF-UFRJ)

LHCb experiment

Leon, 20-26 October 2011 1 / 70

Outline

- Introduction to the LHCb Experiment
- 2 Running Conditions in 2011

Selected Physics Results

- Search for $B_s^0 \rightarrow \mu \mu$
- Measurement of \(\phi_s\)
- Direct CPV in $D \rightarrow KK\pi$

Summary

4 3 5 4 3

Introduction to the LHCb Experiment

- 2 Running Conditions in 2011
- 3 Detector performance
- **Selected Physics Results** • Search for $B_s^0 \rightarrow \mu\mu$
 - Measurement of ϕ_s
 - Direct CPV in $D \rightarrow KK\pi$

Summary

The Physics of LHCb Experiment

A dedicated experiment to study heavy flavour physics at the LHC

Focus on (indirect) searches for New Physics in CPV and rare decays:

- CP violation is one of the ingredients necessary for the generation of the baryon asymmetry observed in the universe
- Within the SM:
 - CP is only violated in the flavor changing processes (FCP)
 - All the CPV observables in terms of 4 parameters (1 single phase) CKM
 - It is much too tiny to explain the observed baryon asymmetry
- New sources of CP violation are needed might show up in FCP
- In order to identify possible new sources, need excellent control of SM contributions

-

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

CP Violation in the Standard Model

→ mass \neq weak int. eigenstates → quark mixing matrix V_{CKM}

$$\overline{\mathbf{V}_{CKM}} = \begin{pmatrix} V_{ud} & V_{ub} & V_{ub} \\ V_{cd} & V_{cb} & V_{cb} \\ V_{ud} & V_{u} & V_{ub} \end{pmatrix}} \quad \mathbf{V}_{CKM} = \begin{pmatrix} 1 & 1 & 1 & e^{-i\gamma} \\ 1 & 1 & 1 & 1 \\ e^{-i\beta} & 1 & 1 \end{pmatrix}$$
$$\mathbf{V}_{CKM} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$$

η: one single CPV phase in the SM
 unitarity → triangles in the complex plane

CP Violation: how do we observe ?

comparing decay rates of particles and anti-particles:

$$\Gamma(P \to f) \neq \Gamma(\bar{P} \to \bar{f}) \Rightarrow CPV$$

- counting experiments $A_{CP} = \frac{\Gamma(P \to f) \Gamma(\bar{P} \to \bar{f})}{\Gamma(P \to f) + \Gamma(\bar{P} \to \bar{f})}$
- observation of CPV is consequence of quantum interference among different amplitudes (*paths*)

classical double-slit interference

quantum double-slit interference

< ロ > < 同 > < 回 > < 回 >

E. Polycarpo (LAPE/IF-UFRJ)

LHCb experiment

CP Violation: how do we observe ?

comparing decay rates of particles and anti-particles:

$$\Gamma(P \to f) \neq \Gamma(\bar{P} \to \bar{f}) \Rightarrow CPV$$

- counting experiments $A_{CP} = \frac{\Gamma(P \to f) \Gamma(\bar{P} \to \bar{f})}{\Gamma(P \to f) + \Gamma(\bar{P} \to \bar{f})}$
- observation of CPV is consequence of quantum interference among different amplitudes (*paths*)
- ♦ neutral mesons oscillate → CP asymmetry is time dependent !

CP violation measurements

- Small CPV effects in K decays
- Large CPV in B decays
- Not yet observed in charm decays

0.5

 $\overline{\rho}$

0.0

< A >

EPS 2001

1.5

1.0

0.5

-0.5

-1.0

-1.5

-1.0

-0.5

0.0

★ ∃ → < ∃</p>

1.0

ε_κ

2.0

1.5

CP violation measurements

- Small CPV effects in K decays
- Large CPV in B decays
 - Excellent work by B factories and D0/CDF (and lattice QCD)
 - Still a lot to be done (γ and B_s^0)
- Not yet observed in charm decays
- So far, everything consistent with CKM
- There is still room for NP
 - comparing measurements which are sensitive to NP phases (*loop* diagrams)

loop diagrams also appear in rare decays (modifying SM predictions)

 main focus of LHCb indirect searches in contrast to direct searches by ATLAS and CMS

E. Polycarpo (LAPE/IF-UFRJ)

Leon, 20-26 October 2011 9 / 70

- 3

The LHCb Detector

< ロ > < 同 > < 回 > < 回 >

The LHCb Detector

э

<ロ> <同> <同> < 同> < 同>

Visit to the cavern

E. Polycarpo (LAPE/IF-UFRJ)

<ロ> (日) (日) (日) (日) (日)

Visit to the cavern

<ロ> (日) (日) (日) (日) (日)

Collaboration

<ロ> <同> <同> < 同> < 同>

Typical events

LHCb Event Display

E. Polycarpo (LAPE/IF-UFRJ)

LHCb experiment

Leon, 20-26 October 2011 15 / 70

イロト イ団ト イヨト イヨ

Typical events

LHCb Event Display

E. Polycarpo (LAPE/IF-UFRJ)

LHCb experiment

<ロ> <同> <同> < 同> < 同>

More details on a typical event

< ロ > < 同 > < 回 > < 回 >

Introduction to the LHCb Experiment

2 Running Conditions in 2011

3 Detector performance

Selected Physics Results • Search for $B_s^0 \rightarrow \mu\mu$

- Measurement of φ_s
- Direct CPV in $D \rightarrow KK\pi$

Summary

Luminosity and Pile-Up

1 fb⁻¹ goal acomplished on October 13th!

automatic tuning of offset of colliding beams

Already operating at ${\sim}1.75{\times}$ design luminosity and ${\sim}3.5\mu$ (visible interactions)

2) Running Conditions in 2011

Detector performance

- 4 Selected Physics Results
 Search for B⁰_s → μμ
 Measurement of φ_s
 - Direct CPV in $D \rightarrow KK\pi$

Summary

E 5 4

Vertex Locator (VELO)

- Primary Vertex: 16 μ m in x and y
- Impact Parameter: 14.4 μm + 19.5/pT μm
- Only 8 mm from the beam, must be retracted during injection !
- Proper time resolution: $< \tau > 50$ fs

VELO: highest resolution vertex detector at LHC

E. Polycarpo (LAPE/IF-UFRJ)

LHCb experiment

Tracking System and Mass resolutions

Evolution of $J/\psi \rightarrow \mu^+\mu^-$ mass resolution with time (MC ~ 12 MeV/c²)

Momentum resolution $\frac{\sigma_p}{p} = 0.4-0.8$ %

E. Polycarpo (LAPE/IF-UFRJ)

Particle ID: RICH detectors

E. Polycarpo (LAPE/IF-UFRJ)

23 / 70

Particle ID: RICH detectors

E. Polycarpo (LAPE/IF-UFRJ)

Particle ID: Calorimeter

E. Polycarpo (LAPE/IF-UFRJ)

Detector performance

Particle ID: Muon Identification

MWPC/GEM 126k front-end channels 97% muon efficiency <2% pion misid

E. Polycarpo (LAPE/IF-UFRJ)

Overall Detector performance

All Sub-detectors are > 98% active

E. Polycarpo (LAPE/IF-UFRJ)

< ロ > < 同 > < 回 > < 回 >

Trigger

- Level-0 in hardware on p_T of e, μ, h to reduce rate to 1 MHz Typical thresholds: 1–3 GeV
- High Level Trigger in software HLT efficiencies high (> 80 %)
- Typical overall L0 × HLT efficiencies: 30 % (multibody hadronic) – 90% (dimuons)

- 2 Running Conditions in 2011
- 3 Detector performance

Selected Physics Results

- Search for $B_s^0 \to \mu \mu$
- Measurement of \(\phi_s\)
- Direct CPV in $D \rightarrow KK\pi$

Summary

LHCb published results:

Published papers (R. Aaij et al. [LHCb Collaboration]):

- "Observation of J/ψ pair production in pp collisions at $\sqrt{s} = 7TeV$," [*arXiv* : 1109.0963[*hep* - *ex*]] (accepted by Phys. Lett. **B**).
- "Measurement of the inclusive phi cross-section in pp collisions at sqrt(s) = 7 TeV," Phys. Lett. B703 (2011) 267-273.
- "Measurement of V⁰ production ratios in pp collisions at \sqrt{s} = 0.9 and 7 TeV," JHEP 1108 (2011) 034.
- "Determination of f_s/f_d for 7 TeV pp collisions and a measurement of the branching fraction of the decay B_d → D⁻K⁺," [arXiv: 1106.4435[hep - ex]] (accepted by PRL).
- Search for the rare decays Bs→ mumu and Bd→mumu," Phys. Lett. B699 (2011) 330-340.
- "Measurement of J/psi production in pp collisions at sqrt(s)=7 TeV," Eur. Phys. J. C71 (2011) 1645.
- "First observation of $B_s \rightarrow D_{s2}^{*+} X \mu \nu$ decays," Phys. Lett. **B698** (2011) 14-20.
- First observation of B_s → J/ψf₀(980) decays," Phys. Lett. B698 (2011) 115-122.
- "Measurement of σ(pp → bbX) at √s = 7 TeV in the forward region," Phys. Lett. B694 (2010) 209-216.
- "Prompt K_s production in pp collisions at sqrt(s)=0.9 TeV," Phys. Lett. B693 (2010) 69-80.

Calibration of our source: production, searches or first observations

+60 contributions to conferences, half of which should be transformed to papers until end of year

LHCb experiment

Selected Results

- Search for $B_s^0 \rightarrow \mu \mu$
- Direct CPV in $D \rightarrow KK\pi$
- Measurement of \(\phi_s\)

A > < = > < =

$B^0_{s,d} \rightarrow \mu^+ \mu^-$ Motivation

Very sensitive to new physics, in particular SSM with large $tan\beta$

-

$B_s^0 ightarrow \mu^+ \mu^-$ Status before EPS2011

July 2011: CDF presents new result (7 fb⁻¹ [arXiv:1107:2304])

- 2.8 σ deviation from background only hypothesis BR=(1.8^{+1.1}_{-0.9}) × 10⁻⁸
- 1.9% compatibility with background+SM hypothesis

-

$B_s^0 ightarrow \mu^+ \mu^-$ Strategy

◆ BR(B_s → μμ)=BR_{cal} ×
$$\frac{\epsilon_{cal}}{\epsilon_{sig}}$$
 × $\frac{N_{sig}}{N_{cal}}$ = α_{cal} * N_{sig}

- Define normalization channel(s)
- Define selection criteria (signal and normalization)
- Estimate efficiencies (signal and normalization)
- Measure yields and calculate BR
- If no clear signal observed:
 - estimate expected $N_{sig}(BR) = \frac{BR}{\alpha_{sol}}$
 - estimate expected N_{bg} in signal region
 - compute upper limit according to compatibility to observed number of events [J. Phys. G 28 (2002) 2693]

-

$B_s^0 ightarrow \mu^+ \mu^-$ Strategy: normalization factors

E. Polycarpo (LAPE/IF-UFRJ)

LHCb experiment

・ 同 ト ・ ヨ ト ・ ヨ ト

$B_s^0 ightarrow \mu^+ \mu^-$ Strategy: BDT calibration

- Expected Background and Signal yields estimated in 2D (µµ mass vs BDT) plane
- BDT: multivariate estimator combining vertex and geometrical variables
 - BDT optimization using MC
 - Calibration using data
 - $\checkmark B \rightarrow h^+ h^-$ for signal
 - ✓ sidebands for background

$B_s^0 ightarrow \mu^+ \mu^-$ Strategy: mass calibration

- ← Crystal Ball shape with average value from $B_s^0 \rightarrow K^+ K^-$
- Resolution interpolated from cc
 and bb
 states

$B_s^0 ightarrow \mu^+ \mu^-$ Results (LHCb)

Upper limits at 95% CL:

- ◆ LHCb: BR< 1.5 × 10⁻⁸ (0.3 fb⁻¹) [LHCb-2011-037]
- ◆ CMS: BR< 1.9 × 10⁻⁸ (1.1 fb⁻¹)
- ◆ LHCb+CMS Combined: BR< 1.1 × 10⁻⁸ [LHCb-2011-047,CMS-PAS-BPH-11-019]
- CDF Excess over SM not confirmed ! Combinatorial

E. Polycarpo (LAPE/IF-UFRJ)

Our best candidate

E. Polycarpo (LAPE/IF-UFRJ)

Leon, 20-26 October 2011 39 / 70

Impact of $B_s^0 ightarrow \mu^+ \mu^-$ Results

while direct searches push towards large $tan\beta$, $B_s \rightarrow \mu\mu$ pushes back to lower values

< ロ > < 同 > < 回 > < 回 >

^IMasterCode (J. Ellis et al.) (http://www.cern.ch//mastercode)

Direct CP Violation in B decays

Using the particle identification capability of LHCb, can isolate clean samples of the different decays contributing to 2-body $B \rightarrow h^+ h^- (h = \pi, K, p)$

 $B^0 \rightarrow K^+\pi^-$: *direct*CP violation (in decay) clearly visible in raw distributions

Corrections required for detector and production asymmetries controlled using $D^0 \rightarrow K^-\pi^+$, $B^0 \rightarrow J/\psi K^{*0}$ samples: percent-level effects

 $\begin{array}{l} \mathcal{A}_{CP} = \Gamma(\overline{B}^0 \to K^- \pi^+) - \Gamma(B^0 \to K^+ \pi^-) / sum = -0.088 \pm 0.011 \pm 0.008 \\ \text{in good agreement with world average:} \qquad -0.098 \pm \frac{0.012}{0.011} \\ \text{Most precise, and first 5σ observation of CP violation in hadronic machine} \\ Prevented form P_0 for the below of the full of CP violation of CP violation in the full of th$

Borrowed from R. Forty on behalf of LHCb Collaboration, ICATPP, Como, 3-7 October 2011

- 4 同 2 4 日 2 4 日

Direct CP Violation in B decays

Adjusting the selection, can enhance the $B_s \rightarrow \pi^+ K^-$ contribution \rightarrow First 3 σ evidence for CP asymmetry in B_s decays

 $A_{\rm CP}({\rm B_s} \rightarrow \pi^+ {\rm K^-}) = 0.27 \pm 0.08 \pm 0.02$

Eventual goal to measure time-dependent asymmetries $\[\ensuremath{\textit{\theta}g}\] B_{(s)} \to \pi^+\pi^-, K^+K^- \to determine CKM angle \gamma from /00p decays \]$

Compare to many other γ measurement from *tree* decays ($eg B_{(s)} \rightarrow D_{(s)}K$) \rightarrow determine any contribution from new physics

Borrowed from R. Forty on behalf of LHCb Collaboration, ICATPP, Como, 3-7 October 2011

E. Polycarpo (LAPE/IF-UFRJ)

CP violation in the interference between mixing and decay

- Analogue of sin(2β) measurement in the B_s
- SM: dominated by mixing (V_{ts} in box diagram)
 - well predicted : $\phi_s = -0.036 \pm 0.002$
 - very close to zero
- NP can introduce large phases
- Fit decay rates for B_s^0 and $\overline{B_s^0}$

$$\phi_{s} = \phi_{s}^{SM} + \phi_{s}^{NP}$$

Measurement in LHCb

Maximum likelihood fit for $B_s \rightarrow J \psi f_0$

Maximum likelihood fit for $B_s \rightarrow J \psi \phi$

- MLL fit to mass, time, angles and flavour tag decision
- fit for 9 physics parameters
 - amplitudes: 3 sizes and 3 phases
 - Γ_s, ΔΓ_s, φ_s
- Δm_s taken from B_s->D_sπ

 goodness of fit, using "pointto-point dissimilarity test" (*) gives P-value of 0.44

(*) see eg. M. Williams, JINST 5 (2010) P09004 [arXiv:1006.3019 [hep-ex]]

Borrowed from W. Hulsbergen (Nikhef) on behalf of the LHCb collaboration More details given by R.M. Villalba (Cinvestav) - D0 measurement with 8fb⁻¹

E. Polycarpo (LAPE/IF-UFRJ)

LHCb experiment

Leon, 20-26 October 2011 46 / 70

Experimental Status before LP 2011

- CDF, D0 and LHCb measurements consistent with SM
- However, all of them above prediction
- Together with D0 ASL hint of NP?

< ロ > < 同 > < 回 > < 回 >

Experimental status after LP 2011

- LHCb combination of J/ψφ with J/ψf₀:
 φ_s = 0.03 ± 0.16 ± 0.07
 [LHCb-CONF-2011-056]
- Expect improvements in both statistical and systematic errors
- Main systematic from backgroundswcl
 Main systematic from backgroundswcl
 Main systematic from backgroundswcl
 CDF 52.6¹
 CDF 52.6¹

-0.4

-3

-2

-1

 $\phi_{c}^{J/\psi\phi}$ (rad)

2

48 / 70

Direct CP violation in $D^{\pm} \rightarrow h^{\mp}h^{+}h^{-}$

- 2 body-decays: time dependent or time integrated counting experiments
- 3 body-decays: sum of many interfering amplitudes
 search for differences in the interference pattern across the Dalitz plot
- SM predictions for D decays difficult to compute
 - null for CF decays
 - → O(10⁻³) for SCS decays [Phys. Rev. D 75 (2007) 036008]
- NP at loop level could generate enhancements up O(10⁻²)

• Experimental status in $D^0 \rightarrow K^- \pi^+ \pi^+$:

- CLEO-C: no CPV ~20k decays [Phys.Rev.D 78 (2008) 072003]
- BABAR: no CPV with ~40k decays [Phys.Rev.D 71 (2005) 091101]
- → BELLE: no CPV with ~240k decays [arXiv:1110.0694] $A_{CP}(D^+ \rightarrow \phi \pi^+) = (+0.51 \pm 0.28 \pm 0.05)\%$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Model Independent Analysis

Look at the statistical significance of the asymmetry across the DP²

• $S_{CP} = \frac{N_+ - N_-}{\sqrt{N_+ + N_-}}$

- Distribution of S_{CP} is Gaussian in the absence of CPV
- Deviations from Gaussian evidence for CPV
- ∑_i(Sⁱ_{CP})² is a χ²: use p-value as a test of compatibility with NO CPV hypothesis^a
- Toy MC Example $D \to KK\pi$
 - 4° phase difference is introduced in the $\phi\pi$ amplitude (bottom) compared to no CPV (top)
 - large local asymmetries along the φ mass washed out in the integrated measurement

^a[Phys.Rev.D 78 (2008) 051102]

< 同 → < 三 →

²I. Bediaga *et al*, [Phys.Rev.D 90 (2009) 096006]

Event Yields in Signal and Control Samples

- Magnet up and down data combined
- Control samples: CF modes and sidebands
- $D_s \rightarrow KK\pi$ (~ statistics)
 - same topology, background
- $K\pi\pi$ (10× statistics)
 - same production
- uniform and adaptative binnings
- no fake assymmetry detected!

Results

E. Polycarpo (LAPE/IF-UFRJ)

Prospects for 2011

Expect to select almost 10 M signal events with 2011 data Also other CS and DCS suppressed modes (charged Higgs at tree level?)

E. Polycarpo (LAPE/IF-UFRJ)

LHCb experiment

- 1) Introduction to the LHCb Experiment
- 2 Running Conditions in 2011
- 3 Detector performance
- Selected Physics Results • Search for $B_s^0 \rightarrow \mu\mu$
 - Measurement of ϕ_s
 - Direct CPV in $D \rightarrow KK\pi$

3 N 4

- LHCb demonstrated excellent performance in 2010/2011
- in a much higher multiplicity environment than anticipated
- all key techniques are shown to work
 - Momentum calibration for precision mass measurements
 - Particle ID
 - Flavor tagging
 - Time-dependent measurements
 - Angular analyses
- high impact results during summer
- many results not mentioned here...

< ロ > < 同 > < 回 > < 回 >

Future: Upgrade

Referees' view of Physics programme:

"Case for flavour physics with 50 fb-1 compelling"

- pass from "exploration" to "precision measurements" phase
- requires reading out the whole detector in a 40 MHz rate
- require changes to detectors and readout electronics
 - VELO sensors (pixels or strips?)
 - RICH readout electronics
 - Tracking stations: straw + fiber or silicon
 - Addition of a Time of flight system
- accumulate 5*fb*⁻¹ before 2017 shutdown
- installation during 2017 shutdown
- work at L=10^{33} cm^2 s^{-1} and $\mu \sim$ 2.13

< ロ > < 同 > < 回 > < 回 > < 回 > <

Future: Upgrade

	Exploration	Precision studies
	Search for $B_s \to \mu^+ \mu^-$ down to SM	Measure unitarity triangle angle γ to
	value	$\sim 4^\circ$ to permit meaningful CKM tests
Current LHCb	Search for mixing induced CP violation in B_s system $(2\beta_s)$ down to SM value	Search for CPV in charm
	backward asymmetry of $B^0 \rightarrow K^* \mu^+ \mu^-$	
	backward asymmetry of $D \rightarrow K \mu \mu$	
	Look for evidence of non-SM photon	
	polarisation in exclusive $b \rightarrow s \gamma^{(*)}$	
	Search for $B^0 \rightarrow \mu^+ \mu^-$	Measure $\mathcal{B}(B_s \to \mu^+ \mu^-)$ to a
		precision of $\sim 10\%$ of SM value
	Study other kinematical observables in $B^0 \to K^* \mu^+ \mu^-$, e.g. $A_T(2)$	Measure $2\beta_s$ to precision $< 20\%$ of SM value
Upgraded		Measure γ to < 1° to match
LHCb	CPV studies with gluonic	anticipated theory improvements
	penguins e.g. $B_s \rightarrow \phi \phi$	
		Charm CPV search below 10^{-4}
	Measure CP violation in	
	B_s mixing (A_{fs}°)	Measure photon polarisation in exclusive $b \rightarrow s\gamma^{(*)}$ to the % level

and more: lepton number violation, low mass majorana neutrinos, eletroweak and QCD.

E. Polycarpo (LAPE/IF-UFRJ)

LHCb experiment

We know NP must be there, we don't where. Come and join us !

э

< 同 > < 三 > < 三

BACKUP

E. Polycarpo (LAPE/IF-UFRJ)

LHCb experiment

Leon, 20-26 October 2011 59 / 70

æ

(ロ) (部) (注) (注)

CKM matrix - Evolution in the last 10 years

E. Polycarpo (LAPE/IF-UFRJ)

LHCb experiment

Leon, 20-26 October 2011 60 / 70

(日)

CKM matrix - end of next year !

E. Polycarpo (LAPE/IF-UFRJ)

э

Flavour specific asymmetry

- Strong interest in semileptonic (or flavour-specific) asymmetry due to D0 result for dimuon asymmetry (comparing # of μ⁺μ⁺ and μ⁻μ⁻ events) A_{SL} = (-9.57 ± 2.51 ± 1.46) × 10⁻³ [arXiv:1005.2757] (expect < 10⁻³ in SM)
- Same approach difficult at pp machine due to production asymmetries Instead use semileptonic decays, $B_{(s)} \rightarrow D^+_{(s)} (K^+K^-\pi^+) \mu^- X$ Result from LHCb expected soon

	Star I and Madal				
Oharanahla	Standard Model	Thb	Dava and an and left	E	Entern Condition
Observable	prediction	I neory error-	Present result	ruture error-	Future facility
$ V_{us} (K \to \pi \ell \nu)$	Input	$0.5\% \rightarrow$	0.2246 ± 0.0012	0.1%	K factory
		0.1%Latt			
$ V_{cb} (B \rightarrow X_c \ell v)$	Input	1%	$(41.54 \pm 0.73) \times 10^{-3}$	1%	Super-B
$ V_{ub} \;(K\to\pi\ell\nu)$	Input	$10\% \rightarrow 5\%_{\rm Latt}$	$(3.38 \pm 0.36) \times 10^{-3}$	4%	Super-B
$\gamma (B \rightarrow DK)$	Input	<1°	(70 ⁺²⁷ ₋₃₀)°	3°	LHCb
$S_{B_d \rightarrow \psi K}$	$sin(2\beta)$	$\lesssim 0.01$	0.671 ± 0.023	0.01	LHCb
$S_{B_s \rightarrow \psi \phi}$	0.036	$\lesssim 0.01$	$0.81^{+0.12}_{-0.32}$	0.01	LHCb
$S_{B_d \to \phi K}$	$sin(2\beta)$	$\lesssim 0.05$	0.44 ± 0.18	0.1	LHCb
$S_{B_s \rightarrow \phi \phi}$	0.036	≤ 0.05	_	0.05	LHCb
$S_{B_d \rightarrow K^* \gamma}$	Few $\times 0.01$	0.01	-0.16 ± 0.22	0.03	Super-B
$S_{B_s \rightarrow \phi \gamma}$	Few $\times 0.01$	0.01	_	0.05	LHCb
A ^d _{SL}	-5×10^{-4}	10-4	$-(5.8 \pm 3.4) \times 10^{-3}$	10-3	LHCb
A _{SL}	2×10^{-5}	<10 ⁻⁵	$(1.6 \pm 8.5) \times 10^{-3}$	10^{-3}	LHCb
$A_{CP}(b \rightarrow s\gamma)$	< 0.01	< 0.01	-0.012 ± 0.028	0.005	Super-B
$\mathcal{B}(B \to \tau \nu)$	1×10^{-4}	$20\% \rightarrow 5\%_{\text{Latt}}$	$(1.73 \pm 0.35) \times 10^{-4}$	5%	Super-B
$\mathcal{B}(B \to \mu \nu)$	4×10^{-7}	$20\% \rightarrow 5\%_{\text{Latt}}$	$<1.3 \times 10^{-6}$	6%	Super-B
$\mathcal{B}(B_s \to \mu^+ \mu^-)$	3×10^{-9}	$20\% \rightarrow 5\%_{Latt}$	$<5 \times 10^{-8}$	10%	LHCb
$\mathcal{B}(B_d \rightarrow \mu^+ \mu^-)$	1×10^{-10}	$20\% \rightarrow 5\%_{Latt}$	$< 1.5 \times 10^{-8}$?	LHCb
$A_{\rm FB}(B \rightarrow K^* \mu^+ \mu^-)_{q_0^2}$	0	0.05	(0.2 ± 0.2)	0.05	LHCb
$B \rightarrow K \nu \bar{\nu}$	4×10^{-6}	20% →	$<1.4 \times 10^{-5}$	20%	Super-B
		10%Latt			

E. Polycarpo (LAPE/IF-UFRJ)

LHCb experiment

Leon, 20-26 October 2011 6

<ロ> <同> <同> <同> < 同> < 同>

62 / 70

æ

X(3872) observation

- Discovered in 2003 in Belle, was later seen in BaBar, CDF and D0
- CDF and Belle/BaBar measurements favor $J^{PC} = 1^{++}$
- $D^{*0}\overline{D^0}$ state ? Still not clear ! Tetraquark ?
- Measure mass, width and quantum numbers with 2011-2012 data
- 16000 events expected in 2011 data (~ 200 from B decay)
- LHCb: Excellent potential to contribute to "exotic" meson espectroscopy

Search for X(4140)

E. Polycarpo (LAPE/IF-UFRJ)

LHCb experiment

Leon. 20-26 October 2011

And more ..

Conclusions

The 19th particles and Nuclei International Conference (PANIC11)

LHCb delivers splendid input to Soft QCD physics in the high- η region

- ▶ K_s^0 production at $\sqrt{s} = 900 \text{ GeV}$ harder p_T spectrum as compared to MC
- $\overline{\Lambda}/\Lambda$ ratio lower than Perugia 0, in particular at high y
- $\overline{\Lambda}/K^0_{\scriptscriptstyle S}$ ratio higher than Perugia 0
- $\blacktriangleright~\overline{p}/p$ ratio slightly lower than Perugia 0 at $\sqrt{s}=900~{\rm GeV}$
- ϕ production at $\sqrt{s} = 7$ TeV above Perugia 0 in the considered kinematical range
- track multiplicity generally higher on data than on MC
 - better agreement for hard events only

Sebastian Schleich (TU Dortmund)	Soft QCD Measurements – LHCb	28.07.2011	24 / 24 😐	500
				0.40
E. Polycarpo (LAPE/IF-UFRJ)	LHCb experiment	Leon, 20-26 Octo	ber 2011	65 / 70

Heavy Flavour Production in LHCb

- The calculation of both quarkonia and open heavy flavour cross sections at hadron colliders within the QCD framework has been a long-standing challenge for theorists and experimentalists
- For quarkonia, until recently no model was able to reproduce measurements of both cross sections and polarization
- For open heavy flavours only recently calculations found an agreement
- LHC measurements will be crucial for the comprehension of open issues
- LHCb presents an ur

ır to the other LHC experiments

< A >

J/Ψ production

dominant systematics (excluding polarization): tracking efficiency and luminosity

 σ (J/ ψ from b, p_T < 14 GeV/c, 2.0 < y < 4.5) = 1.14 ± 0.01 ± 0.16 µb

E. Polycarpo (LAPE/IF-UFRJ)

く 白 ト く ヨ ト く ヨ ト

Prompt J/Ψ : comparison with theory

J/Ψ from b: comparison with theory

Cacciari et al., JHEP. 9805 (1998) 007 JHEP. 0103 (2001) 006

- σ(J/Ψ from b, 2 < y < 4.5) = 1.14±0.01±0.16 μb (Eur. Phys.J. C71 (2011) 1645.)
- when extrapolated to the full solid angle $\Rightarrow \sigma(pp \rightarrow b\bar{b}X) = 288 \pm 4 \pm 48\mu b$
- In excellent agreement with another independent measurement using
 b → D⁰μν_μX: σ(pp → bb̄X) = 284 ± 20 ± 49μb (PLB 694 (2010) 209.)

Bottomonium ($b\bar{b}$) states (Υ)

