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High-Tc superconductivity
Condensed matter analog of baryon chiral perturbation theory

Motivation: High-Tc superconductivity in cuprates

1986: Bednorz and Müller discover high-Tc superconductivity by
doping copper oxide compounds (cuprates):

La2CuO4 −→ La2−xBaxCuO4 (Tc = 35 K)

Although a lot of research has been done ever since, still, the
mechanism of high-Tc superconductivity remains a mystery

Can we learn anything from methods traditionally used
particle physics?
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Motivation: High-Tc superconductivity in cuprates

HTSC results from doping antiferromagnetic insulators

Doping possible with both electrons and holes

Electron-Hole asymmetry
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High-Tc superconductivity
Condensed matter analog of baryon chiral perturbation theory

Motivation: High-Tc superconductivity in cuprates

HTSC results from doping antiferromagnetic insulators

Doping possible with both electrons and holes

Common structure: CuO2 layers separated by spacer layers

Concentrate on antiferromagnetic region: low doping, low T
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Motivation: High-Tc superconductivity in cobaltates

Structural views of Na0.7CoO2 (left) and NaxCoO2 · H2O (right),
where Na and H2O sites are partially occupied
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High-Tc superconductivity
Condensed matter analog of baryon chiral perturbation theory

Microscopic description: The Hubbard model

The Hubbard Hamiltonian defined on a honeycomb lattice:

H = −t
∑

〈x,y〉
s=↑,↓

(c†xscys + c†yscxs) + U
∑

x

c
†
x↑cx↑c

†
x↓cx↓ − µ′

∑

x
s=↑,↓

c†xscxs ,

Parameters of the model:

t : Hopping parameter (nearest neighbors)

U : On-site Coulomb repulsion

µ′ : Chemical potential for fermion number
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High-Tc superconductivity
Condensed matter analog of baryon chiral perturbation theory

Microscopic description: The Hubbard model

The Hubbard Hamiltonian defined on a honeycomb lattice:

H = −t
∑

〈x,y〉
s=↑,↓

(c†xscys + c†yscxs) + U
∑

x

c
†
x↑cx↑c

†
x↓cx↓ − µ′

∑

x
s=↑,↓

c†xscxs ,

Parameters of the model:

t : Hopping parameter (nearest neighbors)

U : On-site Coulomb repulsion

µ′ : Chemical potential for fermion number

Minimal model for cobaltates: contains the relevant physics

Away from half-filling: Hamiltonian virtually unsolvable from
first principles (Neither analytically nor numerically)
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High-Tc superconductivity
Condensed matter analog of baryon chiral perturbation theory

Microscopic description: The Hubbard model

The Hubbard Hamiltonian defined on a honeycomb lattice:

H = −t
∑

〈x,y〉
s=↑,↓

(c†xscys + c†yscxs) + U
∑

x

c
†
x↑cx↑c

†
x↓cx↓ − µ′

∑

x
s=↑,↓

c†xscxs ,

Symmetries:

SU(2)s : Global spin rotation

U(1)Q : Fermion number conservation

Di : Displacement by the two basis vectors

O : 60 degrees rotation

R : Reflection on a lattice axis

T : Time reversal
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Condensed matter analog of baryon chiral perturbation theory

Antiferromagnetism: Near half-filling (1 fermion per site)

Near half-filling (shown here for square lattice):

Antiferromagnetic alignment of spins is preferred

Spontaneous symmetry breaking: SU(2)s −→ U(1)s

Goldstone’s theorem: 2 massless excitations =⇒ 2 magnons
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Effective field theory for holes and magnons

Pure magnon sector: Magnon perturbation theory

Spontaneous global SU(2)s −→ U(1)s spin symmetry breaking:

2 Goldstone bosons (magnons) described by

~e(x) =
(

e1(x), e2(x), e3(x)
)

∈ S2 = SU(2)s/U(1)s

with x = (x1, x2, t)
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Pure magnon sector: Magnon perturbation theory

Spontaneous global SU(2)s −→ U(1)s spin symmetry breaking:

2 Goldstone bosons (magnons) described by

~e(x) =
(

e1(x), e2(x), e3(x)
)

∈ S2 = SU(2)s/U(1)s

with x = (x1, x2, t)

Low-energy magnon physics described by nonlinear σ-model

L =
ρs

2
(∂i~e · ∂i~e +

1

c2
∂t~e · ∂t~e) + · · ·

ρs : spin stiffness c : spin wave velocity

Chakravarty, Halperin, and Nelson, PRB 39 (1989) 2344
Hasenfratz and Niedermayer, Phys. Lett. B268 (1991) 231
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State of affairs: Fermionic sector of effective theory

Earlier attempts by: Shraiman and Siggia, Wen, Shankar, ...

General agreement:

Magnons are coupled to fermions through composite vector
fields
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State of affairs: Fermionic sector of effective theory

Earlier attempts by: Shraiman and Siggia, Wen, Shankar, ...

General agreement:

Magnons are coupled to fermions through composite vector
fields

No agreement on low-energy effective Lagrangian for fermions:

Conflicting realizations of fermion fields

Non-unique structure of terms in Lagrangians

=⇒ Model Lagrangians have not been constructed systematically
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State of affairs: Fermionic sector of effective theory

Earlier attempts by: Shraiman and Siggia, Wen, Shankar, ...

General agreement:

Magnons are coupled to fermions through composite vector
fields

No agreement on low-energy effective Lagrangian for fermions:

Conflicting realizations of fermion fields

Non-unique structure of terms in Lagrangians

=⇒ Model Lagrangians have not been constructed systematically

=⇒ Construction of a systematic low-energy effective field theory
for magnons and holes analogous to baryon chiral perturbation
theory
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2
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)

∈ CP(1)
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Nonlinear realization of SU(2)s symmetryCP(1) representation of magnon field

P(x) =
1

2

(1+ ~e(x) · ~σ
)

∈ CP(1)

Diagonalize the magnon field

u(x)P(x)u(x)† =

(

1 0
0 0

)

, u(x) ∈ SU(2)s , u11(x) ≥ 0
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Nonlinear realization of SU(2)s symmetryCP(1) representation of magnon field

P(x) =
1

2

(1+ ~e(x) · ~σ
)

∈ CP(1)

Diagonalize the magnon field

u(x)P(x)u(x)† =

(

1 0
0 0

)

, u(x) ∈ SU(2)s , u11(x) ≥ 0

Under global SU(2)s spin transformations

P(x)′ = gP(x)g †, g ∈ SU(2)s

The diagonalizing field u(x) transforms as

u(x)′ = h(x)u(x)g †, h(x) ∈ U(1)s , u11(x)′ ≥ 0

Global SU(2)s rotation manifests itself as local U(1)s transformation!
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Composite vector fields

We introduce an anti-Hermitean field

vµ(x) = u(x)∂µu(x)† =

(

v3
µ(x) v+

µ (x)

v−
µ (x) −v3

µ(x)

)

with µ ∈ {1, 2, t}

Components used to couple magnons to holes
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Composite vector fields

We introduce an anti-Hermitean field

vµ(x) = u(x)∂µu(x)† =

(

v3
µ(x) v+

µ (x)

v−
µ (x) −v3

µ(x)

)

with µ ∈ {1, 2, t}

Components used to couple magnons to holes

Under global SU(2)s the components transform as

v3
µ(x)′ = v3

µ(x)−∂µα(x), v±
µ (x)′ = v±

µ (x) exp
(

± 2iα(x)
)

v3
µ(x): Abelian gauge field

v±
µ (x): Vector field (“charged” under U(1)s )
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Symmetry-based construction of effective theory
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Hole pockets ⇐⇒ Effective fields for holes

Where in momentum space do doped holes reside?

=⇒ Angle resolved photoemission spectroscopy (ARPES)
=⇒ Numerical simulations of single hole in AF
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Hole pockets ⇐⇒ Effective fields for holes

Where in momentum space do doped holes reside?

=⇒ Angle resolved photoemission spectroscopy (ARPES)
=⇒ Numerical simulations of single hole in AF

Single hole (away from half-filling) dispersion relation in the first
Brillouin zone:

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

Minima at lattice
momenta
~k = (±2π

3a
,± 2π

3
√

3a
)

and ~k = (0,± 4π

3
√

3a
)
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Location of hole pockets

k2

k1k3

k6k4

k5

The six corners of the first Brillouin zone of the Honeycomb lattice
with three sets of pairs of inequivalent points
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Symmetry properties inherited by effective theory!
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Effective field theory for magnons
Effective field theory for holes and magnons

Transformation behavior of hole fields

Symmetry properties inherited by effective theory!

Transformation rules for hole fields:

SU(2)s : ψf
±(x)′ = exp(±iα(x))ψf

±(x),

U(1)Q : Qψf
±(x) = exp(iω)ψf

±(x),

Di : Diψf
±(x) = exp(ik f ai)ψ

f
±(x),

O : Oψα
±(x) = ∓ exp(±i 2π

3
∓ iϕ(Ox))ψβ

∓(Ox),

R : Rψf
±(x) = ψf ′

± (Rx),

T : Tψf
±(x) = exp(∓iϕ(Tx))ψf ′†

± (Tx),

Tψf †
± (x) = − exp(±iϕ(Tx))ψf ′

± (Tx).
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Transformation behavior of hole fields

Symmetry properties inherited by effective theory!

Transformation rules for hole fields:

SU(2)s : ψf
±(x)′ = exp(±iα(x))ψf

±(x),

U(1)Q : Qψf
±(x) = exp(iω)ψf

±(x),

Di : Diψf
±(x) = exp(ik f ai)ψ

f
±(x),

O : Oψα
±(x) = ∓ exp(±i 2π

3
∓ iϕ(Ox))ψβ

∓(Ox),

R : Rψf
±(x) = ψf ′

± (Rx),

T : Tψf
±(x) = exp(∓iϕ(Tx))ψf ′†

± (Tx),

Tψf †
± (x) = − exp(±iϕ(Tx))ψf ′

± (Tx).

Systematic derivative expansion: Construct the most general
Lagrangian which respects all the symmetries
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Effective field theory for magnons
Effective field theory for holes and magnons

Effective Lagrangian for magnons and holes

L2 =
∑

f =α,β

s=+,−

[

Mψf †
s ψ

f
s + ψf †

s Dtψ
f
s +

1

2M ′Di ψ
f †
s Diψ

f
s

+ Λψf †
s (isv s

1 + σf v
s
2 )ψf

−s

+ iK
[

(D1 + isσf D2)ψ
f †
s (v s

1 + isσf v
s
2 )ψf

−s

− (v s
1 + isσf v

s
2 )ψf †

s (D1 + isσf D2)ψ
f
−s

]

+ σf Lψ
f †
s ǫij f

3
ij ψ

f
s + N1ψ

f †
s v s

i v−s
i ψf

s

+ isσf N2

(

ψf †
s v s

1v−s
2 ψf

s − ψf †
s v s

2v−s
1 ψf

s

)

]

,
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with field strength

f 3
ij (x) = ∂iv

3
j (x) − ∂jv

3
i (x),

covariant derivatives

Dtψ
f
±(x) =

[

∂t ± iv3
t (x) − µ

]

ψf
±(x),

Diψ
f
±(x) =

[

∂i ± iv3
i (x)

]

ψf
±(x),

and σα = +1, σβ = −1
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Assumptions

To describe the antiferromagnet with finite doping, we assume

Fermions experience a homogeneous magnon background field
vi = (x)

The magnetic background does not vary in time: vt = 0

Fermion contact interactions are small
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Uniform Background Field

The homogeneous doping of fermions requires a homogeneous
magnetic background.
⇒ vi = const. up to a U(1)s “gauge” transformation:

v3
i (x)′ = v3

i (x) − ∂iα(x) = sin2 θ(x)

2
∂iϕ(x) − ∂iα(x) = c3

i ,

v±
i (x)′ = v±

i (x) exp(±2iα(x))

=
1

2

[

sin θ(x)∂iϕ(x) ± i∂iθ(x)
]

exp(∓i(ϕ(x) − 2α(x)))

= c±i

Theorem

The staggered magnetization ~e(x) configuration formed for

uniform background fields ci , c
3
i is either homogeneous or a spiral
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Phases of Hole-Doped Antiferromagnets

Homogeneous phase with constant Spiral phase with helical
staggered magnetization structure
Four hole pockets occupied Two hole pockets occupied



27

Motivation
Construction of Effective Field Theory for Holes and Magnons

Spiral Phases
Two-Hole Bound States

Conclusions

Phases of Hole-Doped Antiferromagnets

All four hole pockets populated:

ǫ4 = ǫ0 + Mn +
πn2

4M ′

Two hole pockets populated:

ǫ2 = ǫ0 + Mn +

(

π

2M ′ −
Λ2

8ρs

)

n2

ǫi = ǫ0 + Mn +
1

2
κin

2

ǫ0: Energy density at half filling
n: Total fermion density
κ: Compressibility
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Stability of Phases for Hole Doping

 0
 0  1  2 MeffΛ

2
/2πρs

Homogeneous phase Zero degree spiral Inhomogeneous phase

κi
κ1
κ2
κ3
κ4

A homogeneous phase, a spiral phase or an inhomogeneous
phase are energetically favorable, for large, intermediate, and
small values of ρs , respectively
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One-magnon exchange potentials

At low energies holes interact with each other via magnon
exchange

Two holes can exchange a single magnon only if they have
antiparallel spins, which are both flipped in the
magnon-exchange process

f+

f̃−

f−

f̃+

~p+

~q

~p
′

−

~p− ~p
′

+
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Formation of two-hole bound states

The magnon-exchange potential is attractive and magnon
mediated forces thus lead to bound states if the low-energy
constant Λ is larger than the critical value

Λc =

√

2πρs

M ′ .

Binding energy depends on low energy effective constants

As long as the binding energy is small compared to the
relevant high-energy scales our effective result is valid
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f-wave symmetry of two-hole bound states

The Schrödinger equation describing the relative motion of the
hole pair is a two-component equation
(

− 1
M′∆ γ 1

~r 2 exp(−2iϕ)

γ 1
~r 2 exp(2iϕ) − 1

M′∆

)(

Ψ1(~r )
Ψ2(~r )

)

= E

(

Ψ1(~r )
Ψ2(~r )

)

,

(1)
with γ =

Λ2

2πρs
, (2)

and probability amplitudes Ψ1(~r ) and Ψ2(~r ) which represent the
two flavor-spin combinations α+β− and α−β+. The distance
vector ~r points from the β to the α hole.
Under 60 degrees rotation the wavefunction transforms as

OΨ(r , ϕ) = −Ψ(r , ϕ) (3)

The wave function for the ground state of two holes of flavors α
and β bound by magnon exchange exhibits f-wave symmetry.
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Conclusions

High-T superconductors represent the condensed matter
analog of baryon chiral perturbation theory

We have constructed a systematic low-energy effective field
theory for lightly hole-doped antiferromagnets on the
honeycomb lattice

Using the effective theory we have investigated spiral phases
in hole-doped cobaltates

We have calculated the one-magnon-exchange potential and
investigated the formation of two-hole bound states

Free, relativistic, massless fermions emerge naturally as a
consequence of the symmetries
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Outlook

Analysis of materials with other lattice geometries: Triangular
and Kagomé lattice

Incorporation of Phonons as low-energy degrees of freedom

Systematic treatment of loop graphs

Towards the elusive mechanism of high-T superconductivity
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Some basic facts about graphene

Low-energy excitations of graphene are free, massless and
relativistic Dirac fermions

Undoped graphene is described by the Hubbard model at
half-filling in the weak coupling limit (U ≪ t)

Remember: In the strong coupling limit (U ≫ t) we have an
antiferromagnetic phase, characterized by the spontaneously
broken symmetry SU(2) → U(1)

The effective machinery also applies if there are no Goldstone
bosons present in the low-energy spectrum
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Effective Lagrangian for free fermions

Lfree
2 =

∑

f =α,β

X=A,B

[

ψX ,f †∂tψ
X ,f +vF (σXψ

X ,f †∂1ψ
X ′,f +iσfψ

X ,f †∂2ψ
X ′,f )

]

,

σX =

{

1 X = A

−1 X = B
, and σf =

{

1 f = α

−1 f = β
.

X ′: Other sublattice than X vF : Fermion velocity

Strength of systematic effective field theory approach:
Free, massless, relativistic Dirac fermions as an immediate
consequence of a systematic symmetry analysis
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Comparison with Dirac Lagrangian in (2+1)-dimensions

Combining the fermion fields to the spinors

Ψα(x) =

(

ψA,α(x)
ψB,α(x)

)

, Ψβ(x) =

(

ψA,β(x)
ψB,β(x)

)

,

one shows that the effective Lagrangian for free fermions is
equivalent to

Lfree
2 = vF

(

Ψ̄αγµ∂µΨα + Ψ̄βγµ∂µΨβ
)

,

which represents the Dirac Lagrangian in (2 + 1)-dimensions for a
free and massless particle with Euclidean metric
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Nonlinear Realization of SU(2)s on the fermions

u(x)′ = h(x)u(x)g † C ′
x = gCx

ΨX (x)′ = h(x)u(x)Cx = h(x)ΨX (x)

ΨX (x) =

(

ψX
+(x) ψX †

− (x)

ψX
−(x) −ψX †

+ (x)

)

, x ∈ even sublattice

ΨX (x) =

(

ψX
+(x) −ψX †

− (x)

ψX
−(x) ψX †

+ (x)

)

, x ∈ odd sublattice.

The global spin rotation symmetry is also realized locally on the
fermions.
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Sublattice Structure 1

k = (k1, k2) ∈
{

(0, 0);
(

π
a
, π

a
)
)}

A A

A A

A A

A

B B

B

B

B

B

BB A
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Sublattice Structure 2

k = (k1, k2) ∈
{

(0, 0) ,
(

pi
a
, π

a

)

,
(

π
a
, 0
)

,
(

0, π
a

)

,
(

± π
2a
,± π

2a

)

}

A C

F H

C A

F

B D

E

D

G

B

EG H
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From Charge Carriers to Grassmann numbers

Hubbard model in manifestly SU(2)~Q
invariant form (at half filling)

H = −
t

2

∑

x ,i

Tr[C †
x C

x+î
+ C

†
x+î

Cx ] +
U

12

∑

x

Tr[C †
x CxC

†
x Cx ].

Cx =

(

cx↑ (−1)xc†x↓
cx↓ −(−1)xc

†
x↑

)
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From Charge Carriers to Grassmann numbers

Hubbard model in manifestly SU(2)~Q
invariant form (at half filling)

H = −
t

2

∑

x ,i

Tr[C †
x C

x+î
+ C

†
x+î

Cx ] +
U

12

∑

x

Tr[C †
x CxC

†
x Cx ].

Cx =

(

cx↑ (−1)xc†x↓
cx↓ −(−1)xc

†
x↑

)

ΨX (x) = u(x)Cx X := sublatticeindex
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Solution for ~e(x) for constant background fields

~e(x) =
(

sinθ(x)cosϕ(x), sin θ(x)sinϕ(x), cos θ(x)
)

cos θ(x) =
1

√

1 +
(

ci

c3
i

)2



cos η +
ci

c3
i

sin η cos



2

√

1 +

(

ci

c3
i

)2

c3
i xi







 .

ϕ(x) = atan













ci

c3
i

sin

(

2

√

1 +
(

ci

c3
i

)2

c3
i xi

)

sin η − ci

c3
i

cos η cos

(

2

√

1 +
(

ci

c3
i

)2

c3
i xi

)













.
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Assumptions:

Half-filling: in average one fermion per lattice site

Strong coupling limit: U ≫ t

Consequences:

| ↑↓〉 huge energy cost =⇒ Ground state consists of | ↑〉, | ↓〉
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Antiferromagnetism: Hubbard model

Four possible states at each lattice site: |0〉, | ↑〉, | ↓〉, | ↑↓〉

Assumptions:

Half-filling: in average one fermion per lattice site

Strong coupling limit: U ≫ t

Consequences:

| ↑↓〉 huge energy cost =⇒ Ground state consists of | ↑〉, | ↓〉

Enormous degeneracy of states

How does the ground state order?

By hopping system can lower its energy

Hopping only possible for antiparallel spins

=⇒ Antiferromagnetic spin alignment is favored!
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Relating microscopic operators to effective fields I

With the matrix-valued operator

Cx =

(

cx↑ (−1)x c
†
x↓

cx↓ −(−1)xc
†
x↑

)

the Hubbard Hamiltonian can be written

H = −
t

2

∑

x ,i

Tr[C †
x C

x+î
+ C

†
x+î

Cx ] +
U

12

∑

x

Tr[C †
x CxC

†
x Cx ]

−
µ

2

∑

x

Tr[C †
x Cxσ3]
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Relating microscopic operators to effective fields II

Defining new lattice operators with the help of the
diagonalizing matrix u(x):

ΨA,B,...,H
x = u(x)Cx , x ∈ A,B , ...,H
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Relating microscopic operators to effective fields II

Defining new lattice operators with the help of the
diagonalizing matrix u(x):

ΨA,B,...,H
x = u(x)Cx , x ∈ A,B , ...,H

Work out symmetry transformation properties

Replace lattice operators by effective Grassmann fields

ΨA,B,...,H
x −→ ΨA,B,...,H(x)
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Relating microscopic operators to effective fields II

Defining new lattice operators with the help of the
diagonalizing matrix u(x):

ΨA,B,...,H
x = u(x)Cx , x ∈ A,B , ...,H

Work out symmetry transformation properties

Replace lattice operators by effective Grassmann fields

ΨA,B,...,H
x −→ ΨA,B,...,H(x)

Postulate: Transformation properties are inherited!



47

Motivation
Construction of Effective Field Theory for Holes and Magnons

Spiral Phases
Two-Hole Bound States

Conclusions

Accidental Galilean boost invariance

G : GP(x) = P(Gx), Gx = (~x − ~v t, t),

Gψf
±(x) = exp

(

~pf · ~x − ωf t
)

ψf
±(Gx),

Gψf †
± (x) = ψf †

± (Gx) exp
(

−~pf · ~x + ωf t
)

,

with ~pf = (pf
1 , p

f
2) and ωf given by

pf
1 =

M ′

1 − (M ′/M ′′)2
[

v1 − σf

M ′

M ′′ v2

]

,

pf
2 =

M ′

1 − (M ′/M ′′)2
[

v2 − σf

M ′

M ′′ v1

]

,

ωf =
pf
i

2

2M ′ + σf

pf
1pf

2

M ′′ =
M ′

1 − (M ′/M ′′)2
[1

2
(v2

1 + v2
2 ) − σf

M ′

M ′′ v1v2

]
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Transformation behavior of electron fields

SU(2)s : ψ±(x)′ = exp(±iα(x))ψ±(x)

U(1)Q : Qψ±(x) = exp(iω)ψ±(x)

Di : Diψ±(x) = ∓ exp(ikia) exp(∓iϕ(x))ψ∓(x)

O : Oψ±(x) = ±ψ±(Ox)

R : Rψ±(x) = ψ±(Rx)

T : Tψ±(x) = exp(∓iϕ(Tx))ψ†
±(Tx)

Tψ†
±(x) = − exp(±iϕ(Tx))ψ±(Tx)
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