THE $\omega\text{-}\rho\text{-}\pi$ COUPLING AND THE INFLUENCE OF HEAVIER RESONANCES

Genaro Toledo David García Gudiño

Instituto de Fisica, UNAM

Outline

Motivation

- $\circ~$ The $\omega-\rho-\pi$ mesons coupling (g_{\omega\rho\pi}) in precision measurements.
- The hadronic vertex in several processes
 - VMD
 - Radiative decays
 - Low energy theorems and VMD
 - $\circ \omega \rightarrow \pi \pi \pi$
 - $\circ~\rho$ ' as an effective contact term
 - e+ e- -> π π π
 - Global results
- Conclusions

Motivation

 $\circ\,$ The $\omega-\rho-\pi$ mesons coupling (g_{\omega\rho\pi}) in precision measurements.

The most important channel is $e + e \rightarrow \pi \pi$

The hadronic vertex in several processes

VMD

The VMD Lagrangian including the ρ , π and ω mesons can be set as:

$$\mathcal{L} = g_{\rho\pi\pi}\epsilon_{abc}\rho^{a}_{\mu}\pi^{b}\partial^{\mu}\pi^{c} + g_{\omega\rho\pi}\epsilon^{\mu\nu\lambda\sigma}\partial_{\mu}\omega_{\nu}\partial_{\lambda}\rho^{a}_{\sigma}\pi^{b} + g_{3\pi}\epsilon_{abc}\epsilon^{\mu\nu\lambda\sigma}\omega_{\mu}\partial_{\nu}\pi^{a}\partial_{\lambda}\pi^{b}\partial_{\sigma}\pi^{c} + \frac{em_{V}^{2}}{g_{V}}V_{\mu}A^{\mu}$$

Chiral Anomaly: Wess-Zumino-Witten

Radiative decays

The $g_{\omega\rho\pi}$ coupling can be obtained, within VMD, from radiative decays using the following relations:

the coupling is obtained using

The vertex
$$g_{\omega\rho\pi} = g_{\rho\pi\gamma} g_{\omega,\rho} / e$$
$$F \to \pi\gamma = g_{\nu\pi\gamma}^2 \frac{(m_{\nu}^2 - m_{\pi}^2)^3}{96 \pi m_{\nu}^3}$$

Decay	$g_{\omega ho\pi}$	
ρ -> π γ	12.3 ± 0.9	
ρ -> π γ	14.2 ± 1.0	
ω - > π γ	11.4 ± 0.2	
$\pi \rightarrow \gamma \gamma$	11.6 ± 0.6	
Weigthed average	11.6 ± 0.2	

The $g_{\omega\rho\pi}$ coupling can be obtained, linking VMD and low energy theorems in the $\pi \rightarrow \gamma\gamma$ decay $g_{\omega\rho\pi} = g_{\rho} g_{\omega} / 8\pi^2 f_{\pi}$

using different approaches for the involved parameters, we get

Decay	g _{ωρπ}
$g_{\mathrm{p}}=g_{\mathrm{p}\pi\pi}$	11.5
$g_{\rho} = g_{\rho\pi\pi}, g_{\rho} = 3g_{\omega}$ (SU3)	14.4
$g_{\rho\pi\pi} = m_{\rho} / (2f_{\pi})^{1/2} (KSFR)$	14.2

$\omega \rightarrow 3\pi$ decay

Contribution from the ρ channel and the contact term.

M. Gell-Mann and F. Zachariasen, PR 124 953(1961).

The amplitude is given by $\mathcal{M}_D = \imath \epsilon_{\mu\alpha\beta\gamma} \eta^{\mu} p_1^{\alpha} p_2^{\beta} p_3^{\gamma} \mathcal{A},$ $\mathcal{A} =_{6} g_{3\pi} + 2g_{\omega\rho\pi} g_{\rho\pi\pi} \left(D^{-1} [\rho^0, p1 + p2] + D^{-1} [\rho^+, p1 + p3] + D^{-1} [\rho^-, p2 + p3] \right)$

Using $g_{\omega\rho\pi}$ the average from rad. decays and no contact term misses the experimental width by 45%

In order to reach the 100% of the experimental width, we can either increase $g_{\omega\rho\pi}$ up to 15.7 or keep its value from radiative decays and add the contact term. A blind inclusion requires $g_{3\pi}$ = -65 pm 7 and 406 pm 10 GeV⁻³

The contact term

The contact term can be seen as due to the presence of a heavier meson in the intermediate state and the chiral anomaly have a truly contact term. Therefore the information in an effective contact term have many contributions

Linking VMD and thelow energy theorems requires

$$\begin{array}{lll} \alpha/(\pi f_\pi^3) &=& e^2 6 (g_{3\pi} + g_{\omega\rho\pi} g_{\rho\pi\pi}/m_\rho^2)/g_\omega \\ \\ &\to& g_{3\pi} = g_{\rho\pi\pi}/16\pi^2 f_\pi^3 = 47 \ GeV^{-3}. \end{array}$$

Contact term as a ρ' channel

Using the VMD ideas, the contact term can be seen as a pinched diagram due to the presence of a heavier meson in the intermediate state. In this case the natural candidate is the ρ '(1450), m' = 1465 MeV and Γ' = 400 MeV.

The heavy mass of the ρ^\prime allows to make the following approximation:

we assume that $g_{\omega\rho'\pi} / g_{\rho'\pi\pi} = g_{\omega\rho\pi} / g_{\rho\pi\pi} = 2$. and $g_{\omega\rho'\pi} = 10 - 18 \text{ GeV}^{-1}$

	g _{3π}
Rudaz	47
Dominguez	29 pm 3
Kuraev	123
Kaymakcalan	37
This work from $\Gamma(\omega -> 3\pi)$	65 pm 7
This work from ρ '	49 pm 24

N. N. Achasov PRD 62 117503 (2000).

S. Rudaz, PLB 145 281(1984). E. A. Kuraev, Z. Silagadze, hep-ph 9502406 (1995). Kaymakcalan, S. Rajeev, J. Schechter, PRD 30 594(1984). $e^+e^- \rightarrow \omega \rightarrow 3\pi$ Cross Section

We can write the amplitude for the ω channel as follows:

$$\mathcal{M} = \frac{e^2 m_{\omega}^2}{g_{\omega}} \frac{\bar{v} \gamma^{\mu} u \epsilon_{\mu\alpha\beta\gamma} p_1^{\ \alpha} p_2^{\ \beta} p_3^{\ \gamma}}{q^2 \left(q^2 - m_{\omega} + i m_{\omega} \Gamma_{\omega}\right)} \mathcal{A}$$

R.R. Akhmetshin et al.. Phys. Lett. B 578 285(2004).

Global Results

Process	Without contact GeV ⁻¹	With contact GeV ⁻¹
Radiative processes	11.6 ± 0.2	11.6 ± 0.2
$\Gamma(\omega \rightarrow 3\pi)$	15.7 ± 0.1	12.6 pm 1.3
σ (e+ e>3π)	13.1 ± 0.1	9.8 ± 1.4
Weigthed average	13.8 ± 0.1	11.6 ± 0.2

Conclusions

We have determined the coupling for the omega-rho-pi mesons from several processes.

The value obtained for $g_{\omega\rho\pi}$ is sensible to the inclusion of the contact term.

We have taken the contact term as produced by a heavier resonance.

The combined values are useful to make more solid estimates of hadronic contributions in precision measurements