Search for Dilepton and Lepton + MET resonances at high mass with ATLAS Experiment at LHC

Elizabeth Castaneda-Miranda
University of Wisconsin-Madison
On behalf of the ATLAS Collaboration
XII Mexican Workshop on Particles and Fields
Leon, Guanajuato, Mexico
October 20-26, 2011
Motivation

- The unification of fundamental interactions as well as some SM deficiencies have motivated the introduction of extended gauge symmetries, featured by several possible extensions of the SM
 - GUTS
 - Superstring-inspired E6 models
 - Extra-dimentions (Kaluza-Klein model)
 - etc...
- Z' and W' are the generic names of the new heavy gauge bosons introduced in those extensions
- ATLAS has studied the dilepton and lepton+MET signatures to search for this particles using 1.21fb-1 of integrated luminosity recorded this summer.
ATLAS Detector

- High energy electrons are detected by the LAr calorimeter, and identified using shower shapes, track matching, etc...

- Muons are detected by the Muon System, and their momenta obtained by a combination with the Inner Detector information
Lepton Resolution

• Electrons
 • Isolated energy deposition in the calorimeter
 \[\frac{\sigma(E)}{E} = \frac{k_1}{\sqrt{E}} + k_2 \]
 • For high energy electrons, the resolution is dominated by constant term \(k_2\) which is 1.2% in the barrel and 1.8% in the endcap

• Muons
 • At high \(p_T\) curvature resolution dominated by intrinsic/mis-alignment term \(S_2\) which ranges from 0.15/TeV to 0.44/TeV (for \(\eta > 2\))
 \[\frac{q}{p_T} + \left(\frac{q}{p_{T \text{ ini}}} \right) + S_1 \left(\frac{q}{p_{T \text{ ini}}} \right) + S_2 \]
Introduction

- \(Z'(SSM) \) is a benchmark model with the same couplings constants as the usual \(W \) and \(Z \).

- The neutral gauge boson are produced via the Drell-Yan process: \(pp \rightarrow Z' \rightarrow l^+l^- \) (\(l=\text{e},\mu \)), clean signature.

- The differential cross-section for the lepton-pair production depends on:
 - Center of mass energy
 - \(Z' \) couplings
 - \(Z' \) invariant mass \(M \), its rapidity \(y \)
 - The c.m angle \(\theta^* \)

- If a \(Z' \) is discovered we will be able to measure:
 - Its mass, decay width
 - The total cross-section
 - Its spin and its branching ratios

\[\frac{d\sigma}{dMdyd(\cos\theta^*)} = \frac{M_{x_A x_B}}{48\pi} \left[\sum_q \left[f_q^A(x_A)f_q^B(x_B) + f_q^I(x_A)f_q^I(x_B) \right] S_q(1 + \cos^2 \theta^*) \right. \]

\[\left. + \sum_q \left[f_q^A(x_A)f_q^B(x_B) - f_q^I(x_A)f_q^I(x_B) \right] 2A_q \cos \theta^* \right] \]

\(S_q \) and \(A_q \) symmetric and antisymmetric contributions to the cross-section in \(\cos \theta^* \) (\(\theta^* \) is the c.m. angle between negative lepton with respect to the quark direction).

\(f^A \) and \(f^B \) are parton densities depending on the momentum fractions of the quarks.

Electron Selection

- EM clusters with $E_T > 25$ GeV, $|\eta| < 2.47$
- Criteria on the transverse shower shape, the longitudinal leakage into hadronic calorimeter
- Removal of transition region between barrel and endcap
- Association to an inner detector track
- Calorimeter isolation for leading electron < 0.2 in cone DR of 0.2
Muon Selection

- Combined muons with $p_T > 25$GeV
- Hit requirements in ID and MS require 3 hits in all 3 muon stations to ensure optimal momentum resolution
- Impact parameter cuts: d_0 and z_0 wrt PV
- Muons opposite charge
Signal and backgrounds

- Z' signal simulated using Pythia
- Backgrounds simulated used:
 - Pythia (Z/γ*)
 - Alpgen (W+jets)
 - Herwig (WW, WZ, ZZ)
 - MC@NLO (ttbar)
- Higher-order corrections MC cross-sections
- Data driven backgrounds:
 - QCD
 - Cosmics
QCD Backgrounds

- Sources for electron channel
 - Photon conversions
 - Semi-leptonic heavy quark decays
 - Hadrons faking electrons
- Methods estimation
 - Reverse electron identification
 - Isolation fit techniques
 - Fake rates from jet samples
- Source for the muon channel
 - Semi-leptonic decays of b and c quarks
- Estimate from muon isolation variable
 - Found to be negligible
Drell-Yan Background

- \(Z/\gamma^*\) the irreducible background which dominates in the entire search region.
 - Using the Pythia with NNLO multiplicative the K-factor correction was predicted
 - This K-factor was applied to the signal
 - The PDFs uncertainties and higher-order corrections are the dominant uncertainties
Dilepton invariant mass

- Normalization to the Z peak
 \[\sigma(Z') = \sigma(Z) \frac{N(Z')}{N(Z)} \frac{A(Z)}{A(Z')} \]
- No systematics were applied to the signal
- Resolution systematics is negligible
- Remaining systematics

<table>
<thead>
<tr>
<th>Source</th>
<th>dielectrons</th>
<th>dimuons</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>signal</td>
<td>background</td>
</tr>
<tr>
<td>Normalization</td>
<td>5%</td>
<td>NA</td>
</tr>
<tr>
<td>PDFs/(\alpha_S)</td>
<td>NA</td>
<td>10%</td>
</tr>
<tr>
<td>QCD K-factor</td>
<td>NA</td>
<td>3%</td>
</tr>
<tr>
<td>Weak K-factor</td>
<td>NA</td>
<td>4.5%</td>
</tr>
<tr>
<td>Trigger/Reconstruction</td>
<td>negligible</td>
<td>negligible</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>5%</td>
</tr>
</tbody>
</table>
Z' Limits

- Checking if there is a significant excess in the signal: p-value for electrons 54% and for muons: 24%
- Since there is not evidence, we obtained the 95% C.L limits on $\sigma^* B(Z' \rightarrow ll)$ using the cross-section ratio Z/Z'
Introduction

- The heavy gauge charge common denoted by W', is the most easily searched for in a their decay to a charged lepton and neutrino.
- The differential cross-section for the W' depends on:
 - Center of mass energy
 - Its couplings, its mass
 - Its rapidity and the c.m angle θ^*
- The observation of the W' is based on the detection of an excess of a single lepton at high p_T above background, with a sharp upper edge (transverse mass)

T. G. Rizzo, JHEP 0705 (2007)

\[
\frac{d\sigma}{d\tau \ dy \ dz} = K \frac{G_F^2 M_W^4}{48\pi} \sum_{qq'} |V_{qq'}|^2 \left[S G_{qq'}^+(1 + z^2) + 2 A G_{qq'}^- z \right]
\]

- The coupling strengths for leptons and quarks, the helicity factors and the square of the total collision energy are implicitly in S and A
- $V_{qq'}$ is the CKM(unit) matrix; $q(q')$ is a $u(d)$-type quark
- $G_{qq'}^\pm$ are the combinations of the parton distribution functions.
- z in the cosθ, the scattering angle in the c.m. frame defined as that between the incoming u-type quark and the outgoing neutrino.
- $\tau = M^2/s$, where M^2 lepton-pair invariant mass and $\sqrt{s}=cme$
Electron Selection

- EM clusters with $E_T > 25$ GeV,
 $|\eta| < 1.37$ or $1.52 < |\eta| < 2.47$
- Criteria on the transverse shower shape, the longitudinal leakage into hadronic calorimeter
- Calorimeter isolation for leading electron < 9 GeV in cone DR of 0.4
- $(\text{MET or } E_T^{\text{miss}}) > 25$ GeV and $E_T^{\text{miss}}/E_T > 0.6$
- One electron per event.
Muon Selection

- Combined muons with pt>25GeV, $|\eta|<1.0$ or $1.3<|\eta|<2.0$
- Hit requirements in ID and MS require 3 hits in all 3 muon stations to ensure optimal momentum resolution
- Impact parameter cuts: $d0$ and $z0$ wrt PV
- One muon per event and $E_T^{miss}>25\text{GeV}$
Signal and backgrounds

- W' signal simulated using Pythia
- Backgrounds simulated used:
 - Pythia Z/W
 - Alpgen (W+jets)
 - Herwig (WW, WZ, ZZ)
 - MC@NLO (ttbar)
 - Higher-order corrections MC cross-sections
- Data driven backgrounds:
 - QCD
 - Cosmics

<table>
<thead>
<tr>
<th></th>
<th>$\ell\nu$</th>
<th>$\mu\nu$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W \to \ell\nu$</td>
<td>1.59 ± 0.13</td>
<td>1.36 ± 0.13</td>
</tr>
<tr>
<td>$Z \to \ell\ell$</td>
<td>0.00010 ± 0.00004</td>
<td>0.095 ± 0.005</td>
</tr>
<tr>
<td>diboson</td>
<td>0.08 ± 0.08</td>
<td>0.11 ± 0.08</td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>0.08 ± 0.08</td>
<td>0</td>
</tr>
<tr>
<td>QCD</td>
<td>0</td>
<td>0.01 ± 0.02</td>
</tr>
<tr>
<td>Total</td>
<td>1.75 ± 0.24</td>
<td>1.57 ± 0.15</td>
</tr>
</tbody>
</table>
Transverse mass

- Transverse mass definition
 \[m_T = \sqrt{2p_T E_{T\text{miss}}^\mu (1 - \cos \Delta \phi_{l, E_{T\text{miss}}^\mu})} \]

- Signal and background normalized using calculated cross-section and the integrated luminosity of data.

- Remaining Systematics

<table>
<thead>
<tr>
<th>Source</th>
<th>ε_{sig}</th>
<th>N_{bg}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency</td>
<td>2.7% 3.9%</td>
<td>2.7% 3.8%</td>
</tr>
<tr>
<td>Energy/momentum resolution</td>
<td>0.3% 2.3%</td>
<td>2.9% 0.6%</td>
</tr>
<tr>
<td>Energy/momentum scale</td>
<td>0.5% 1.3%</td>
<td>5.2% 3.0%</td>
</tr>
<tr>
<td>QCD background</td>
<td>-</td>
<td>10.0% 1.3%</td>
</tr>
<tr>
<td>Monte Carlo statistics</td>
<td>2.5% 3.1%</td>
<td>9.4% 9.9%</td>
</tr>
<tr>
<td>Cross section (shape/level)</td>
<td>3.0% 3.0%</td>
<td>9.5% 9.5%</td>
</tr>
<tr>
<td>All</td>
<td>4.7% 6.3%</td>
<td>18% 15%</td>
</tr>
</tbody>
</table>
W' Limits

- None of the observations for any mass in either channel or the combination has a significance above 3σ.
- 95% C.L exclusion limits on \(\sigma^* B(W' \rightarrow l\nu) \)
ATLAS published its latest results from these final states:

Exclusion limits at 95% C.L.:

- $M(Z'_{SSM}) < 1.83\text{ TeV}$
- $M(W'_{SSM}) < 2.15\text{ TeV}$

ATLAS is still motivated to continue searching for high mass resonances