

Search for Dilepton and Lepton + MET resonances at high mass with ATLAS Experiment at LHC

Elizabeth Castaneda-Miranda University of Wisconsin-Madison On behalf of the ATLAS Collaboration XII Mexican Workshop on Particles and Fields Leon, Guanajuato, Mexico October 20-26, 2011

Motivation

- The unification of fundamental interactions as well as some SM deficiencies have motivated the introduction of extended gauge symmetries, featured by several possible extensions of the SM
 - GUTS
 - Superstring-inspired E6 models
 - Extra-dimentions (Kaluza-Klein model)
 - etc...
- Z' and W' are the generic names of the new heavy gauge bosons introduced in those extensions
- ATLAS has studied the dilepton and lepton+MET signatures to search for this particles using 1.21fb-1 of integrated luminosity recorded this summer.

XIIIMWPF, October 2011

ATLAS Detector

- High energy electrons are detected by the LAr calorimeter, and identified using shower shapes, track matching etc...
- Muons are detected by the Muon System, and their momenta obtained by a combination with the Inner Detector information

Lepton Resolution

Electrons

• Isolated energy deposition in the calorimeter

$$\frac{\sigma(E)}{E} = \frac{k_1}{\sqrt{E}} + k_2$$

• For high energy electrons, the resolution is dominated by constant term k_2 which is 1.2% in the barrel and 1.8% in the endcap

• Muons

• At high p_{τ} curvature resolution dominated by intrinsic/misaligment term S₂ which ranges from 0.15/TeV to 0.44/TeV (for η >2) $\frac{q}{q} \rightarrow (\frac{q}{2}) + \frac{s}{2}(\frac{q}{2}) + \frac{s}{2}$

$$\frac{q}{p_T} \to \left(\frac{q}{p_T}\right)_{ini} + S_1 \left(\frac{q}{p_T}\right)_{ini} + S_2$$

XIIIMWPF, October 2011

Introduction

- Z'(SSM) is a benchmark model with the same couplings constants as the usual W and Z.
- The neutral gauge boson are produced via the Drell-Yan process: pp→Z'→l+l- (l=e,µ), clean signature
- The differential cross-section for the lepton-pair production depends on:
 - Center of mass energy
 - Z' couplings
 - Z' invariant mass M, its rapidity y
 - The c.m angle $\theta *$
- If a Z' is discovered we will be able to measure:
 - Its mass, decay width
 - The total cross-section
 - Its spin and its branching ratios

J. L. Rosner, Phys. Rev. D35 (1986)

$$\begin{aligned} \frac{d\sigma}{dMdyd(\cos\theta^*)} &= \frac{Mx_A x_B}{48\pi} \left[\sum_q \left[f_q^A(x_A) f_{\bar{q}}^B(x_B) + f_{\bar{q}}^A(x_A) f_q^B(x_B) \right] S_q(1 + \cos^2\theta^*) \right. \\ &\left. + \sum_q \left[f_q^A(x_A) f_{\bar{q}}^B(x_B) - f_{\bar{q}}^A(x_A) f_q^B(x_B) \right] 2A_q \cos\theta^* \right] \end{aligned}$$

- S_q and A_q symmetric and antisymmetric contributions to the cross-section in $\cos\theta^*$ (θ^* is the c.m. angle between negative lepton with respect to the quark direction)
- f^A and f^B are parton densities depending on the momentum fractions of the quarks

XIIIMWPF, October 2011

Electron Selection

• EM clusters with E_T >25GeV,

|η|<2.47

- Criteria on the transverse shower shape, the longitudinal leakage into hadronic calorimeter
- Removal of transition region
 between barrel and endcap
- Association to an inner detector track
- Calorimeter isolation for leading electron<0.2 in cone DR of 0.2

XIIIMWPF, October 2011

7

Muon Selection

- Combined muons with p_T >25GeV
- Hit requirements in ID and MS require 3 hits in all 3 muon stations to ensure optimal momentum resolution
- Impact parameter cuts: d0 and z0 wrt PV
- Muons opposite charge

8

Signal and backgrounds

- Z' signal simulated using Pythia
- Backgrounds simulated used:
 - Pythia (Z/γ^{*})
 - Alpgen (W+jets)
 - Herwig (WW, WZ, ZZ)
 - MC@NLO (ttbar)
- Higher-order corrections MC cross-sections
- Data driven backgrounds:
 - QCD
 - Cosmics

Elizabeth Castaneda-Miranda

QCD Backgrounds

- Sources for electron channel
 - Photon conversions
 - Semi-leptonic heavy quark decays
 - Hadrons faking electrons
- Methods estimation
 - Reverse electron identification
 - Isolation fit techniques
 - Fake rates from jet samples
- Source for the muon channel
 - Semi-leptonic deacays of b and c quarks
- Estimate from muon isolation variable
 - Found to be negligible

Drell-Yan Background

- Z/γ* the irreducible background which dominates in the entire search region.
 - Using the Pythia with NNLO multiplicative the K-factor correction was predicted
 - This K-factor was applied to the signal
 - The PDFs uncertainties and higher-order corrections are the dominant uncertainties

$m_{e^+e^-}$ [GeV]	70-110	110-200	200-400	400-800	800-3000
DY	258482 ± 410	5449 ± 180	613 ± 26	53.8 ± 3.1	2.8 ± 0.1
tτ	218 ± 36	253 ± 10	82 ± 3	5.4 ± 0.3	0.1 ± 0.0
Diboson	368 ± 19	85 ± 5	29 ± 2	3.1 ± 0.5	0.3 ± 0.1
W+jets	150 ± 100	150 ± 26	43 ± 10	4.6 ± 1.8	0.2 ± 0.4
QCD	332 ± 59	191 ± 75	36 ± 29	1.8 ± 1.4	< 0.05
Total	259550 ± 510	6128 ± 200	803 ± 40	68.8 ± 3.9	3.4 ± 0.4
Data	259550	6117	808	65	3

$m_{\mu+\mu-}$ [GeV]	70-110	110-200	200-400	400-800	800-3000
DY	236319 ± 320	5171 ± 150	483 ± 22	40.3 ± 2.5	2.0 ± 0.3
tī	193 ± 21	193 ± 20	63 ± 6	4.2 ± 0.4	0.1 ± 0.0
Diboson	307 ± 16	69 ± 5	25 ± 2	1.7 ± 0.5	< 0.05
W+jets	1 ± 1	1 ± 1	< 0.5	< 0.05	< 0.05
QCD	1 ± 1	< 0.5	< 0.5	< 0.05	< 0.05
Total	236821 ± 487	5434 ± 150	571 ± 23	46.1 ± 2.6	2.1 ± 0.3
Data	236821	5406	557	51	5

Dilepton invariant mass

Normalization to the Z peak

 $\sigma(Z')=\sigma(Z)*N(Z')/N(Z)*A(Z)/A(Z')$

- No systematics were applied to the signal
- Resolution systemactics is negligible
- Remaining systematics

urce	diele	ectrons	dimuons		
	signal	background	signal	background	
rmalization	5%	NA	5%	NA	
)Fs/ α_s	NA	10%	NA	10%	
D K-factor	NA	3%	NA	3%	
ak K-factor	NA	4.5%	NA	4.5%	
igger/Reconstruction	negligible	negligible	4.5%	4.5%	
tal	5%	11%	7%	12%	
tal	5%	11%	7%		

Z' Limits

- Checking if there is a significant excess in the signal: p-value for electrons 54% and for muons: 24%
- Since there is not evidence, we obtained the 95%C.L limits on $\sigma * B(Z' \rightarrow II)$ using the cross-section ratio Z/Z'

XIIIMWPF, October 2011

Lepton+MET final states

Introduction

- The heavy gauge charge common denoted by W', is the most easily searched for in a their decay to a charged lepton and neutrino.
- The differential cross-section for the W' depends on:
 - Center of mass energy
 - Its couplings, its mass
 - Its rapidity and the c.m angle $\theta *$
- The observation of the W' is based on the detection of an excess of a single lepton at high p_T above background, with a sharp upper edge (transverse mass)

T. G. Rizzo, JHEP 0705 (2007) $\frac{d\sigma}{d\tau \ dy \ dz} = K \frac{G_F^2 M_W^4}{48\pi} \sum_{qq'} |V_{qq'}|^2 \left[SG_{qq'}^+(1+z^2) + 2AG_{qq'}^-z \right]$

•The coupling strengths for leptons and quarks, the helicity factors and the square of the total collision energy are implicitly in S and A

•V_{qq} is the CKM(unit) matrix; q(q') is a u(d)-type quark

•G_{qq}.[±] are the combinations of the parton distribution functions.

•z in the $\cos\theta$, the scattering angle in the c.m. frame defined as that between the incoming u-type quark and the outgoing neutrino.

 $\bullet \tau = M^2/s,$ where M^2 lepton-pair invariant mass and $\sqrt{s}{=}cme$

Electron Selection

• EM clusters with E_T >25GeV,

|η|<1.37 or 1.52<|η|<2.47

- Criteria on the transverse shower shape, the longitudinal leakage into hadronic calorimeter
- Calorimeter isolation for leadin electron<9GeV in cone DR of 0.4
- (MET or E_T^{miss})>25GeV and $E_T^{miss}/E_T^{-}>0.6$
- One electron per event. XIIIMWPF, October 2011

Muon Selection

 Combined muons with pt>25GeV,

|η|<1.0 or 1.3<|η|<2.0

- Hit requirements in ID and MS require 3 hits in all 3 muon stations to ensure optimal momentum resolution
- Impact parameter cuts: d0 and z0 wrt PV
- One muon per event and E_T^{miss}>25GeV

Signal and backgrounds

- W' signal simulated using Pythia
- Backgrounds simulated used:
 - Pythia Z/W
 - Alpgen (W+jets)
 - Herwig (WW, WZ, ZZ)
 - MC@NLO (ttbar)
- Higher-order corrections MC cross-sections
- Data driven backgrounds:
 - QCD
- Cosmics XIIIMWPF, October 2011

	e u		$\mu\nu$		
$W \rightarrow \ell \nu$	1.59	± 0.13	1.36	± 0.13	
$Z \to \ell \ell$	0.0001	0 ± 0.00004	0.095	5 ± 0.005	
diboson	0.08	± 0.08	0.11	± 0.08	
tī	0.08	± 0.08	0		
QCD	0	+0.17 -0	0.01	$+0.02 \\ -0.01$	
Total	1.75	+0.24 -0.18	1.57	± 0.15	

Transverse mass

Transverse mass definition

$$m_T = \sqrt{2p_T E_T^{miss}} (1 - \cos \Delta \phi_{l, E_T^{miss}})$$

- Signal and background normalized using calculated cross-section and the integrated luminosity of data.
- Remaining Systematics

	$\varepsilon_{\rm sig}$		$N_{ m bg}$	
Source	$e\nu$	$\mu\nu$	$e\nu$	$\mu\nu$
Efficiency	2.7%	3.9%	2.7%	3.8%
Energy/momentum resolution	0.3%	2.3%	2.9%	0.6%
Energy/momentum scale	0.5%	1.3%	5.2%	3.0%
QCD background	-	-	10.0%	1.3%
Monte Carlo statistics	2.5%	3.1%	9.4%	9.9%
Cross section (shape/level)	3.0%	3.0%	9.5%	9.5%
All	4.7%	6.3%	18%	15%

W' Limits

- None of the observations for any mass in either channel or the combination has a significance above 3σ.
- 95%C.L exclusion limits on $\sigma * B(W' \rightarrow lv)$

XIIIMWPF, October 2011

Summary

- ATLAS published its latest results from these final states:
 - Dilepton:arXiv:1108.1582, accepted by Phys. Rev. Lett.
 - Lepton+MET: Phys.Lett. B, (2011) doi:10.1016/j.physletb.2011.09.093
- Exclusion limits at 95%C.L.:
 - M(Z'_{SSM})<1.83TeV
 - M(W'_{SSM})<2.15TeV
- ATLAS is still motivated to continue searching for high mass resonances XIIIMWPF, October 2011
 Elizabeth Cast

