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Introduction

We are interested in the EM interaction of high spin particles, in particular the spin 1
and spin 3/2 cases, however there are issues concerning the conventional description of
such particles:

I The Proca equation describes spin 1 massive particles:

[(−p2 +m2)gµν + pµpν ]Aν = 0, (1)

But in the presence of an EM field it does not predict the natural EM moments of
a charged spin 1 massive particle such as the W boson.

I Spin 3/2 particles are usually described by the Rarita-Scwhinger equation:

(γ · p−m)ψα = 0, (2)

but it presents the Velo-Zwanziger problem, involving super-luminal propagation
of its wave fronts when coupled to an EM field.

We avoid these problems working with a more complete description beyond these for-
mulations, we refer to this alternative method as covariant projector formalism [1].

[1] Napsuciale, Kirchbach, Rodriguez, Eur. Phys. Jour. A 29:289(2006)



Advantages of the covariant projector formalism

I By means of the minimal substitution it allows for the construction of an EM
interaction written in terms of undetermined parameters that can be fixed by
physical requirements such as a well behaved forward Compton Scattering.

I In the (1/2, 0)⊕ (0, 1/2) representation of the HLG it reproduces, by an
appropriate choice of parameters, the EM properties of a spin 1/2 fermion
associated with the Dirac Lagrangian.

I It properly describes the EM interaction of massive spin 1 particles in the
(1/2, 1/2) representation of the HLG.

I In the spin 3/2 case it provides an eq. of motion with causal wave fronts by
requiring a gyromagnetic factor g = 2 under electromagnetic interactions.



Covariant projector formalism

The method consists in constructing an eq. of motion for a given representation of the
Poincaré group as a projection onto the mass and spin of a sate:

P(m,s)ψ(m,s) =

(
P 2

m2
P(s)

)
ψ(m,s) = ψ(m,s) (3)

where the projector P(s) is usually found in terms of the Casimir operators of the
Poincaré group P 2 and W 2. It can be rewritten as:

(Γµν∂
µ∂ν +m2)ψ(m,s) = 0 (4)

I This projection is insensitive to the antisymmetric part of Γµν , in order to obtain
a complete theory one has to consider the most general antisymmetric part.

This antisymmetric structure is irrelevant in the free case, but it gets activated if one
replaces the derivatives by covariant derivatives since they do not commute, in fact:

[Dµ, Dν ] = −ieFµν , (5)



Electromagnetic interaction

We obtain the electromagnetic interaction from the gauge principle applied to the La-
grangian associated with the equation of motion. The free Lagrangian is:

Lfree =
1

2
(∂µψ)Γµν∂

νψ − 1

2
m2ψψ + h.c., (6)

and by the minimal substitution ∂µ → Dµ = ∂µ − i eAµ we obtain the gauge invariant
Lagrangian as:

L =
1

2
(D†µψ)ΓµνD

νψ − 1

2
m2ψψ + h.c., (7)

it can be separated as L = Lfree + Lint, where

Lint = −jµAµ +
1

2
e2(Γµν + Γµν)AµAν (8)

The electromagnetic transition current is identified in the momentum space as:

jµ(p′, p) = −1

2
eψ(p′)(Γνµp

′ν + Γµνp
ν)ψ(p) + h.c (9)

From the interaction Lagrangian we can extract Feynman rules of first and second order
in the charge of the particle.



Feynman Rules

iΠ(p) = i(Γµνp
µpν −m2)−1 ie (Γνµp

′ν + Γµνp
ν) = ie Vµν(p′, p)

−ie2(Γµν + Γνµ)



Electromagnetic moments

The electromagnetic moments of a particle are defined by means of a multipole expansion
of a current distribution. We obtain such a current from our electromagnetic interaction
expressed in the Breit frame:

JµB =
1

m
jµ(p′, p), p′ = (ω/2, q/2), p = (ω/2,−q/2), (10)

The cartesian electromagnetic moments are defined as:

QlE = bl0(−i∂q)%E

∣∣∣
q=0

, QlM =
1

l + 1
bl0(−i∂q)%M

∣∣∣
q=0

, (11)

where the electric density %E and the so called magnetic density %M read:

%E = j0B , %M = ∂q · [jB(q)× q], (12)

the bl0 coefficients are obtained from the spherical harmonics as

bl0(r) = l!
√

4π/(2l + 1)rlYl0(Ω), (13)

so that for a monopole b00(−i∂q) = 1, for a dipole b10(−i∂q) = −i∂/∂q3, for a
quadrupole b20(−i∂q) = 3∂2/∂q23−∂2/∂q2, and for an octupole b30 = 3(∂/∂q3)(5∂2/∂q23−
3∂2/∂q2), and so on.



(1/2, 0)⊕ (0, 1/2) Representation

We can construct an EOM for a state transforming in the (1/2, 0)⊕ (0, 1/2) represen-
tation. The second order equation for a parity conserving particle is:

(Γµνp
µpν −m2)ψ = 0, (14)

Γµν = gµν − i gMS
µν , MS

µν = σµν/2 =
i

4
[γµ, γν ] (15)

where g is an undetermined parameter and after the minimal coupling we get the elec-
tromagnetic transition current as:

jµ(p′, p) = −eψ(p′)(Γνµp
′ν + Γµνp

ν)ψ(p) = −eψ(p′)Vµ(p′, p)ψ(p) (16)

= −eψ(p′)
(

(p′ + p)µ + igMS
µν(p′ − p)ν

)
ψ(p), (17)

The EM moments associated with this current for a particle of positive parity are found
to be:

〈Q0
E〉 = −e, Q1

M = − ge

2m
〈S3〉, (18)

higher moments being zero. This results match the electron moments when g = 2. We
can also calculate Compton scattering in this formalism.



Compton scattering

We calculate Compton scattering at the tree level using states with well defined parity
as:

The result of the differential cross section is given in terms of the g parameter, the
photon energy η = ω/m and the scattering angle in the lab system x = cos θ. In
particular we have independently of the g parameter:[

dσ

dΩ

]
x=1

= r20,

[
dσ

dΩ

]
η=0

=
1

2
(x2 + 1)r20,

[
dσ

dΩ

]
η→∞

= 0, (19)

where r20 = e2/(4πm) = α/m is the so called classical radius of the particle. In other
directions and at other energies, the differential cross section is written in terms of the
factor g,

I As a result we obtain the Compton scattering cross section for a particle with an
arbitrary dipole magnetic moment, the Dirac cross section is obtained in the
particular case g=2. [2].

[2] Delgado, Napsuciale, Rodriguez, Phys. Rev. D83, 073001 (2011).



Diferential cross section with g = gP = 5.58

dσ(ω)

dΩ

Differential cross section (in nb)
as a function of the photon en-
ergy ω (in MeV) at the fixed an-
gle θ=107◦. With the experimental
data obtained by the TAPS exper-
iment [3]

[3] V. Olmos de Leon et al., Eur. Phys. J. A 10 , 207(2001).



(1/2, 1/2) Representation

Now the equation of motion reads:

(Γαβµνp
µpν −m2gαβ)ηβ = 0, (20)

with:

Γαβµν = gαβgµν −
1

2
(gανgβµ + gαµgβν)− i (g − 1/2) [MV

µν ]αβ , (21)

[MV
µν ]αβ = i(gαµgβν − gανgβµ), (22)

with g an arbitrary parameter. The electromagnetic transition current is:

jµ(p′, p) = −eηα(p′)(Γαβνµp
′ν + Γαβµνp

ν)ηβ(p) = −eηα(p′)Vαβµ(p′, p)ηβ(p)

= −eηα(p′)
(
gαβ(p′ + p)µ + ig[MV

µν ]αβ(p′ − p)ν
)
ηb(p), (23)

The EM moments associated with this current are found to be:

〈Q0
E〉 = −e, 〈Q1

M 〉 = − ge

2m
〈S3〉, 〈Q2

E〉 = − (1− g)e

m2
〈3S2

3 − S2〉. (24)

higher moments being zero. This results match the W boson moments when g = 2.



Compton Scattering

In this case we have:[
dσ

dΩ

]
x=1

=

(
1

24
(g − 2)4η2 + 1

)
r20,

[
dσ

dΩ

]
η=0

=
1

2
(x2 + 1)r20, (25)

In the general case, the differential cross section is written in terms of g and grows with
the energy, except for g = 2, in this case the cross section looks like [3]:
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Cross section for Compton scatter-
ing off spin 1 particles with η ∼
100, normalized to σT = (8/3)πr20

And it grows with the energy when g 6= 2. So that we fix g = 2 as the only value
preventing the cross section to grow indefinitely at high energy. This requirement fixes
the EM moments to those of the W boson.

[3] Napsuciale, Rodriguez, Delgado, Kirchbach, Phys. Rev. D77, 014009 (2008).



(1/2, 1/2)⊗ [(1/2, 0)⊕ (0, 1/2)] Representation

The equation of motion for this representation is:

(Γαβµνp
µpν −m2gαβ)ψβ = 0, (26)

Γαβµν = −
1

3
gανgβµ −

i

6
σανgβµ −

1

3
gαµgβν +

2

3
gαβgµν

+
i

3
gµνσαβ −

i

6
gβνσαµ +

1

6
gανσβµ +

i

6
gαµσβν

−
i

2
gSgαβσµν + gV (gαµgβν − gβµgαν) + ic(gαµσβν − gανσβµ)

+ id(gβνσαµ − gβµσαν) + ifγ5εαβµν , (27)

where c, d, f, gS , gV are arbitrary parameters for a parity conserving particle. Eliminating
the spin 1/2 sector coupling, and identifying the gyromagnetic factor as g = 2f + gV
the current reduces to

jµ(p′, p) = −eψα(p′)(gαβ(p′ + p)µ + ig[Mµν ]αβ(p′ − p)ν)ψβ(p). (28)

where
[Mµν ]αβ = MS

µνgαβ + [MV
µν ]αβ (29)

are the generators of the (1/2, 1/2)⊗ [(1/2, 0)⊕ (0, 1/2)] representation of the HLG.



Electromagnetic moments

The explicit form of the current is

jµ = −eψα(gαβ(p′ + p)µ + ig(MS
µνgαβ + [MV

µν ]αβ)(p′ − p)ν)ψβ (30)

= −eψα(gmγµgαβ − (g − 2)(p+ p′)µgαβ + 2g(pαgβµ + p′βgαµ))ψ
β
,

it differs from the one of the RS formalism:

jRSµ = −eψα(2mγµgαβ)ψβ , (31)

The EM moments of a particle of well defined parity of charge Q0
E = −e, are:

〈Q1
M 〉 = − ge

2m
〈S3〉, 〈Q2

E〉 = − (1− g)e

m2
〈A〉, 〈Q3

M 〉 = − g e

2m3
〈B〉, (32)

〈Q1
M 〉 = −2

3

e

2m
〈S3〉, 〈Q2

E〉 = − e

m2
〈A〉, 〈Q3

M 〉 = − 2e

2m3
〈B〉, (33)

Where we have used Q for the RS results and:

A =
1

3
(3S2

z − S2), B = S3

(
15S2

z −
41

5
S2

)
. (34)

In order to find g in the second order formalism we can use Compton Scattering.



Compton Scattering

The differential cross section for this process is found in terms of the g parameter and
grows with the energy in every direction for an arbitrary g. This behavior can only be
prevented in the forward direction:

dσ

dΩ

∣∣∣∣
x=1

= r20 +
r20
81

(g − 2)(5(g − 2)3 − 18(g − 2)− 36)η2 +
8r20
81

g2(g − 2)η4, (35)

so that the only value leading to a well behaved forward Compton scattering is

g → 2, (36)

The EM moments associated with this requirement are:

〈Q1
M 〉 = −2× e

2m
〈S3〉, 〈Q2

E〉 = +
e

m2
〈A〉, 〈Q3

M 〉 = −2× e

2m3
〈B〉, (37)

Unlike the RS moments, this EM moments are related with an energy independent
forward Compton scattering.



Compton scattering
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[4] Delgado, Napsuciale, Phys. Rev. D80, 054002 (2009).



Summary

I Second order formalism describes spin 1/2 particles in the (1/2, 0)⊕ (0, 1/2) with
an arbitrary dipole magnetic moment,

〈Q0
E〉 = −e, Q1

M = − ge

2m
〈S3〉, (38)

Forward Compton scattering is insensitive to the g parameter. Dirac result
corresponds to the particular case g = 2.

I For spin 1 in the (1/2, 1/2) representation we find:

〈Q0
E〉 = −e, 〈Q1

M 〉 = − ge

2m
〈S3〉, 〈Q2

E〉 = − (1− g)e

m2
〈3S2

3 − S2〉, (39)

Forward Compton scattering requires g = 2, and so one gets the moments of the
W boson as predicted by the SM.

I In the case of spin 3/2 in the (1/2, 1/2)⊗ [(1/2, 0)⊕ (0, 1/2)] for a particle of
charge Q0

E = −e we find:

〈Q1
M 〉 = − ge

2m
〈S3〉, 〈Q2

E〉 = − (1− g)e

m2
〈A〉, 〈Q3

M 〉 = − ge

2m3
〈B〉, (40)

Forward Compton scattering requires g = 2, so that the resultant moments are
also associated with causality.



Conclusions

I The covariant projector formalism allows for a complete description of
electromagnetic interactions in a given representation of the Poincaré group.

I We have shown that the Dirac equation is not the only way to properly describe
spin 1/2 fermions.

I By considering a general antisymmetric part in the equation of motion, the
covariant projector formalism in the vector case is free of the problems exhibited
by the Proca equation in an EM environment.

I Rarita-Scwhinger equation fails to properly describe the complete structure of a
spin 3/2 particle in the (1/2, 1/2)⊗ [(1/2, 0)⊕ (0, 1/2)], this can be seen in the
Gordon-like decomposition of the electromagnetic current.

I We have found that Compton scattering from a second order formalism exhibits a
cross section that grows with the energy except in the forward direction when
g = 2, a condition also required for the causality of the theory.

I The EM moments of a spin 3/2 particle in the second order formalism differ from
those of the RS formalism and are related with an energy independent forward
Compton scattering, same as the moments of lower spin particles.


