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Abstract

The static properties of baryons are computed in heavy
baryon chiral perturbation theory in the large-Nc limit,
where Nc is the number of colors. The analysis is spe-
cialized to the baryon axial-vector couplings and magnetic
moments. One-loop non-analytic corrections are analyzed
in the limit ∆ ≡ MT − MB → 0 and compared with
the current experimental data. An extra comparison with
conventional heavy baryon chiral perturbation theory is
carried out for Nf = Nc = 3.

Both approaches coincide order by order in the

expansion
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Introduction

QCD is an SU(3) gauge theory of quarks and gluons. Despite the
progress achieved in the understanding of the strong interactions with
QCD, analytic calculations of the spectrum and properties of hadrons
are not possible because the theory is strongly coupled at low energies.

Some methods to extract the low-energy consequences of QCD:

. Chiral perturbation theory

. The 1/Nc expansion



Chiral Perturbation Theory

• CHPT exploits the symmetry of LQCD under SU(3)L×SU(3)R×
U(1)V transformations on the flavors u, d, s in the limit mq → 0.

• Chiral symmetry is spontaneously broken to the vector subgroup
SU(3)×U(1)V by the QCD vacuum, resulting in an octet of pseu-
doscalar Goldstone bosons, the mesons.

• There is an expansion about the chiral limit in powers of mq/Λχ,

or, equivalently, in powers of m2
Π/Λ

2
χ, where Λχ ∼ 1 GeV is the

scale of chiral symmetry breaking and mΠ is the meson mass.

• Baryons can be incorporated in a systematic way (HBCHPT).



Large-Nc QCD

• The generalization of QCD from Nc = 3 to Nc � 3 colors, known
as the large-Nc limit, was proposed1 to understand the nonpertur-
bative dynamics of hadrons.

• Large-Nc QCD is the SU(Nc) gauge theory of quarks and gluons,
where Nc is a parameter of the theory.

• In the large-Nc limit the meson sector consists of a spectrum of
narrow resonances1 and meson-meson scattering amplitudes are
suppressed by powers of 1/

√
Nc. The baryon sector is more subtle

to analyze.2

• Physical quantities are considered in this limit, where corrections
arise at relative orders 1/Nc, 1/N2

c , . . ., the 1/Nc expansion.

1G. ’t Hooft, Nucl. Phys. B 72, 461 (1974); B 75, 461 (1974).
2E. Witten, Nucl. Phys. B 160, 57 (1979).



Heavy Baryon Chiral Perturbation Theory

To lowest order in the derivative expansion, Lbaryon is2

Lbaryon = iTr B̄v(v · D)Bv − i T̄µv (v · D)Tvµ + ∆ T̄µv Tvµ

+ 2DTr B̄vS
µ
v {Aµ, Bv} + 2F Tr B̄vS

µ
v [Aµ, Bv]

+ C (T̄µv AµBv + B̄vAµT
µ
v ) + 2H T̄µv S

ν
vAνTvµ .

Bv and T
µ
abc are baryon octet and decuplet fields. Octet meson fields

enter into Aµ and Vµ via

ξ = eiΠ/f , Σ = ξ2 = e2iΠ/f

where f ≈ 93 MeV is the pion decay constant.

D, F , C, and H are coupling constants and ∆ = M∆ −MB.

2E. Jenkins and A.V. Manohar, Phys. Lett. B 225, 558 (1991); 259, 353 (1991).



Chiral Corrections to the Baryon Axial Vector Current

(a) (b) (c)

(d)

Figure 1: One-loop corrections to the baryon axial vector current.



The renormalized baryon axial vector current is3

〈Bi|JAµ |Bj〉 =






αij − ∑

Π



β̄Π
ij − λ̄Π

ijαij


F (mΠ, 0, µ) +
∑

Π
γΠ
ijI(mΠ, µ)









× ūBiγµγ5uBj .

. αij: lowest order result

. β̄Π
ij = βΠ

ij + β′Πij: from Fig. 1(a)

. λ̄Π
ij = λΠ

ij + λ′Πij: from wave function renormalization, Figs. 1(b,c)

. γΠ
ij: from Fig. 1(d).

F (mΠ,∆, µ) and I(mΠ, µ) are the integrals over the loops.
3E. Jenkins and A. V. Manohar, Phys. Lett. B 255, 558 (1991); 259, 353 (1991).



Important Results

. The F/D ratios were found to be close to their SU(6) values, with
F/D ≈ 2/3, value predicted by the nonrelativistic quark model.

. There were large cancellations in the corrections to the baryon
axial vector current between one-loop graphs with intermediate
spin-1/2 octet and spin-3/2 decuplet baryon states:

2 Corrections ∼ 100% when only octet baryon states are included

2 Corrections ∼ 40% when both octet and decuplet baryon states
are included

Using the 1/Nc expansion it can be proved that, for pions,4

F

D
=

2

3
+ O











1

N2
c











.

4R. Dashen, A.V. Manohar, Phys. Lett. B 315, 425 (1993), 315, 438 (1993)



The 1/NC Expansion of QCD

In the large-Nc limit the baryon sector has a contracted spin-flavor
symmetry SU(2Nf ), with Nf the number of light-quark flavors.

SU(2Nf ) decomposes under SU(2)×SU(Nf ) into a tower of baryon

states with spins J = 1
2, . . . ,

Nc
2 in the flavor representation.5

Any physical operator O(m) that scales as Nm
c may be written as

O(m) = Nm
c

∑

n,p,q
cn















J i

Nc















p 









T a

Nc











q














Gjb

Nc















n−p−q

The cn have power series expansions in 1/Nc beginning at order unity.

5R. Dashen and A.V. Manohar, Phys. Lett. B 315, 425 (1993); 315, 438 (1993).

J.-L. Gervais and B. Sakita, Phys. Rev. Lett. 52, 87 (1984); Phy. Rev. D 30, 1795 (1989).



A QCD operator transforming according to a given SU(2)×SU(Nf )

representation can be expanded as6

OQCD =
∑

n
cn

1

Nn−1
c

O(n)

The spin-flavor generators J i, T a, and Gia of SU(2Nf ) are

J i = q†














σi

2
⊗ I















q , (1, 1)

T a = q†










I ⊗ λa

2











q , (0, adj)

Gia = q†














σi

2
⊗ λa

2















q . (1, adj)

They satisfy a Lie algebra.
6R. F. Dashen, E. Jenkins, A.V. Manohar, Phys. Rev. D 49, 4713 (1994).



• Baryon axial vector current operator

Akc = a1G
kc + b2

1

Nc
Dkc

2 + b3
1

N2
c
Dkc

3 + c3
1

N2
c
Okc

3 + . . .

c = 1 + i2 for ∆S = 0 transitions and c = 4 + i5 for |∆S| = 1
transitions.

• Baryon magnetic moment operator

Mkc = m1G
kc +m2

1

Nc
Dkc

2 +m3
1

N2
c
Dkc

3 +m4
1

N2
c
Okc

3 + . . .

The magnetic moments are proportional to the quark charge ma-
trix Q = diag(2/3,−1/3,−1/3), so they can be separated into
isovector and isoscalar components, Mk3 and Mk8, respectively.
We thus define the baryon magnetic moment operator as

Mk = MkQ ≡Mk3 +
1√
3
Mk8



Combined Expansion in mq and 1/Nc

In the chiral limit mq → 0

• Mesons become massless Goldstone boson states

• There is an expansion about the chiral limit in powers of mq/Λχ

In the large-Nc limit

• The nucleon and ∆ become degenerate, M∆ −MN ∝ 1/Nc → 0
and form a single irreducible representation of the contracted spin-
flavor symmetry of baryons

• There is an expansion in powers of 1/Nc about this limit

Goal: Consider a combined expansion in mq/Λχ and 1/Nc about
the double limit mq → 0 and Nc → ∞.



In the chiral limit mq → 0 with ∆ held fixed,

F (mΠ,∆, µ) = F0 +






mΠ

∆





F1 +






mΠ

∆







2
F2 + . . .

In the 1/Nc → 0 limit with mΠ held fixed

F (mΠ,∆, µ) = F̄0 +











∆

mΠ











F̄1 +











∆

mΠ











2
F̄2 + . . .

The difference between the two expansions is referred to as the non-
commutativity of the chiral and large-Nc limits.7

Conditions for HBCHPT to be valid:

mΠ � Λχ and ∆ � Λχ

mΠ/∆ is not constrained (mΠ/∆ ∼ 0.5).

7T. D. Cohen, Phys. Lett. B359, 23 (1995).



Chiral Lagrangian for Baryons in the 1/Nc Expansion

Lbaryon =

iD0 −Mhyperfine + Tr


Akλc


Akc +
1

Nc
Tr











Ak 2I√
6











Ak + . . . ,

with8

ξ(x) = eiΠ(x)/f , Π(x) =
πa(x)λa

2
+
η′(x)I√

6
, (a = 1, . . . , 8)

For Nc = 3

Mhyperfine = m2
1

Nc
J2 ,

Akc = a1G
kc + b2

1

Nc
JkT c + b3

1

N2
c
Dkc

3 + c3
1

N2
c
Okc

3

8E. Jenkins, Phys. Rev. D 53, 2625 (1996)



Renormalization of the Baryon Axial Vector Current

One-loop wave function renormalization graph:

B BI
B

iGB =
∑

j,k,b,BI

i2

f2



Akb




BBI



Ajb




BIB

× ∫ d4k

(2π)4
(kk)(−kj)

(

k2 −m2
b

)

[(k + p) · v − (MI −M ) + iε]
,

where b = 1, . . . , 9 or π, K, η, η′ labels the intermediate meson.



Vertex Correction

B B′B1 B2

q



δAia




vertex

B′B =
∑

j,k,b,B1,B2

− i

f2



Akb




B′B2



Aia




B2B1



Ajb




B1B

∫ d4k

(2π)4

× (kk)(−kj)
(

k2 −m2
b

) (

k · v − ∆M1M + iε
) (

(k − q) · v − ∆M2M + iε
),

q · v = 0 and q · v = M −M ′ for octet-octet and decuplet-decuplet
matrix elements, respectively.



Total Correction From Figs. 1(a,b,c): ∆/mΠ → 0 Limit

δAkc = 1
2[A

ia, [Aib, Akc]]Πab

where

Πab =
1

8
[3F (π) + 4F (K) + F (η)] δab

+
2
√

3

5











3

2
F (π) − F (K) − 1

2
F (η)











dab8

+











1

3
F (π) − 4

3
F (K) + F (η)





















δa8δb8 − 1

8
δab − 3

5
dab8d888











and

F (mb, 0, µ) = − 1

16π2f2m
2
b















11

3
+ ln

m2
b

µ2

















Large-NC Cancellations

For baryons with spins of order unity

T a ∼ Nc , Gia ∼ Nc , J i ∼ 1

Naively


Aja,


Ajb, Akc






 ∼ O(N3
c )

But from large-Nc consistency conditions and analytic calculations



Aja,


Ajb, Akc






 ∼ O(Nc)

There are large-Nc cancellations provided one sums over all baryon
states in a complete multiplet of the large-Nc SU(6) spin-flavor sym-
metry, i.e., over both the octet and the decuplet, and uses axial
coupling ratios given by the large-Nc symmetry.



Some Explicit Calculations

• Singlet contribution

[Gia, [Gia, JkT c]] + [Gia, [J iT a, Gkc]] + [J iT a, [Gia, Gkc]] =

− 2

Nf
(Nc +Nf )G

kc +















9

4
Nf −

1

Nf
+ 2















JkT c

∼ O(Nc)

• Octet contribution

dab8[Gia, [Gib, Gkc]] =















3

8
Nf −

2

Nf















dc8eGke +















1

2
− 2

N2
f















δc8Jk

∼ O(Nc)



• 27 contribution

[Gi8, [Gi8, Gkc]] =
1

4



−f c8dfd8e + 2dc8ddd8e


Gke +
1

Nf
δc8Gk8

+
1

2Nf
dc88Jk

∼ O(Nc)

Thus

δAkc =
1

2



Aja,


Ajb, Akc






 Πab ∼ O(N0
c )

δAkc ∼ 1

Nc
× gA

with gA ∼ O(Nc) and f ∼ O(
√
Nc).



Correction From Fig. 1(d)

δAkc = −1

2



T a


T b, Akc






 Πab ,

where Πab is now a function of I(mΠ).

• Singlet piece [T a, [T a, Akc]] = NfA
kc ∼ O(Nc)

• Octet piece dab8[T a, [T b, Akc]] =
Nf
2 d

c8eAke ∼ O(Nc)

• 27 piece [T 8, [T 8, Akc]] = f c8df8deAke ∼ O(Nc)

Thus

δAkc ∼ 1

Nc
× gA



Comparison Between the two Approaches

In the limit ∆/mΠ = 0

δAkcdeg =
1

2



Aja,


Ajb, Akc






 Πab(F ) −
1

2



T a


T b, Akc






 Πab(I)

so the renormalized current is

Akcren = Akc + δAkcdeg

The matrix elements of the space components of the axial vector
current between baryon states are

〈Bj|ψ̄γkγ5T
cψ|Bi〉 =



Akcren





BjBi

Bi and Bj are baryons in the lowest-lying irreducible representation
of contracted SU(6) spin-flavor symmetry.



The correction within HBCHPT to the axial current can be decom-
posed into flavor singlet, octet and 27 contributions in terms of flavor
singlet, octet, and 27 linear combinations of F (mΠ) and I(mΠ):

〈Bj|JAµ |Bi〉 =






αBjBi + b
BjBi
1 F1 + b

BjBi
8 F8 + b

BjBi
27 F27

+ c
BjBi
1 I1 + c

BjBi
8 I8 + c

BjBi
27 I27







 ūBjγµγ5uBi,

with

b
BjBi
1 = −(aπBjBi + aKBjBi + a

η
BjBi

),

aΠ
BjBi = β̄Π

BjBi − λ̄Π
BjBiαBjBi

and

F1 =
1

8
[3F (π) + 4F (K) + F (η)] ,

with similar expressions for the remaining coefficients.9

9R.F.M. and C.P. Hofmann, hep-ph/0609120



For Nc = 3, there is a one-to-one correspondence between the con-
tributions of [Akcren]BjBi and 〈Bj|JAµ |Bi〉.

For Figs. 1(a,b,c) one has











1

2
[Aia, [Aia, Akc]]











BjBi

= b
BjBi
1 ,











1

2
dab8[Aia, [Aib, Akc]]











BjBi

= b
BjBi
8 ,











1

2
[Ai8, [Ai8, Akc]]











BjBi

= b
BjBi
27 ,

and similar expressions occur for Fig. 1(d)



For example, for the process n→ peν̄e the singlet piece is











1

2
[Aia, [Aia, Akc]]











pn
=

115

144
a3

1 +
7

48
a2

1b2 +
19

48
a1b

2
2 −

31

432
a2

1b3

− 11

12
a2

1c3 +
7

144
b22 +

169

216
a1b2b3 −

37

36
a1b2c3 + . . . , (1)

whereas from HBCHPT

b
pn
1 = −2(F +D)3 − 2

9
(F +D)2C2 − 50

81
HC2 (2)

Equations (1) and (2) are found to be the same under

D = 1
2a1 + 1

6b3 , C = −a1 − 1
2c3 ,

F = 1
3a1 + 1

6b2 + 1
9b3 , H = −3

2a1 − 3
2b2 − 5

2b3 .

Both approaches yield the same results order by order



Some Numerical Values

Including corrections to order O(1/N 2
c ) to gA one has10

Table 1: Values of gA for various semileptonic processes.

Process Total value Tree level Singlet piece Octet piece 27 piece

n→ pe−νe 1.272 1.031 0.279 −0.040 0.002

Σ+ → Λe+νe 0.653 0.542 0.168 −0.057 0.000

Σ− → Λe−νe 0.624 0.542 0.113 −0.031 −0.000

Λ → pe−νe −0.904 −0.720 −0.134 −0.055 0.005

Σ− → ne−νe 0.375 0.298 0.080 −0.002 −0.001

Ξ− → Λe−νe 0.139 0.178 −0.034 −0.004 −0.001

Ξ− → Σ0e−νe 0.869 0.729 0.128 0.014 −0.002

Ξ0 → Σ+e−νe 1.312 1.031 0.246 0.041 −0.006

Calculation of higher-order corrections is rather involved.

10R.F.M., C.P. Hofmann, hep-ph/0609120



Work in Progress: Full Dependence on ∆/mΠ

Expanding the function F (m,∆, µ) in a power series yields,

δAkc =
1

2



Aja,


Ajb, Akc






 Πab(1) −
1

2







Aja,


Akc,


M, Ajb














Πab(2)

+
1

6







Aja,






M,


M, Ajb






 , Akc








−1

2







M, Aja


 ,






M, Ajb


 , Akc


















Πab(3) + . . .

where the tensor Πab(n) is written in terms of

F (n)(mΠ,∆, µ) ≡ ∂nF (mΠ,∆, µ)

∂∆n

We expect to get a more stable fit by improving the convergence of
the series.



Conclusions

• An alternative approach to write one-loop corrections in
heavy baryon chiral perturbation theory has been proposed,
including the functional dependence in ∆ ≡M∆ −MN .

• There are large cancellations in loops containing intermediate
octet and decuplet baryon states.

• These cancellations arise naturally in this approach and not
as a numerical cancellation at the end of the calculation.

• The one-loop correction is very sensitive to the deviations of
the axial coupling ratios from their SU(6) values.


