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Gluons

Euclidean QCD Lagrangian

L =
X

f

ψ̄f (iγµDµ + m)ψf +
1

4
F a

µνF a
µν

L invariant under local gauge transformations

ψf → ψU
f = U ψf , f = 1, 2, . . . ,Nf

U(x) = eigω(x) ∈ SU(N) , ω = ωaT a , a = 1, 2, . . . ,N2 − 1

covariant derivative and gauge fields (gluons)

Dµ = ∂µ − igAµ , Aµ = Aa
µT a , Fµν =

i

g
[Dµ,Dν ]

F a
µν = ∂µAa

ν − ∂νAa
µ + gf abcAb

µAc
ν , [T a,T b] = if abcT c , tr(T aT b) =

1

2
δab

SU(N) gauge transformations

Aµ → AU
µ = U

“

Aµ +
i

g
∂µ

”

U† , Dµ → UDµU†

Fµν → UFµνU† ,
1

4
F a

µνF a
µν =

1

2
tr(FµνFµν)
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Ghosts

infinitesimal gauge transformations

δψf = igωψf , δAµ = ∂µω − ig [Aµ, ω] = Dµω , (Dµω)a = ∂µω
a + gf abcAb

µω
c

necessary for quantization: (covariant) gauge fixing

∂µAµ = 0

change of variables: Aµ = A
U
µ , ∂µAµ = 0 (suppose Aµ,U unique!)

Z

D[A] =

Z

D[U]

Z

D[A] detJ

=

Z

D[U]

Z

D[A] δ (∂µAµ) det (−∂µDµ)

=

Z

D[U]

Z

D[A]

Z

D[B] exp
„

−i
Z

d4x Ba ∂µAa
µ

«Z

D[c, c̄] exp
„Z

d4x c̄a ∂µDab
µ cb

«

“Landau gauge”, B Nakanishi-Lautrup field, c, c̄ ghosts: scalar fermion fields
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BRST symmetry

Faddeev-Popov Lagrangian
Z

D[ψf , ψ̄f ,A] exp
„

−

Z

d4x L

«

∝

Z

D[ψf , ψ̄f ,A,B, c, c̄] exp
„

−

Z

d4x LFP

«

LFP =
X

f

ψ̄f (iγµDµ + m)ψf +
1

4
F a

µνF a
µν + iBa ∂µAa

µ + ∂µc̄a Dab
µ cb

gauge symmetry is broken by the gauge fixing, but LFP is invariant under BRST
transformations

sψf = igcaT aψf , sAa
µ = Dab

µ cb

sca =
1

2
gf abccbcc , sc̄a = iBa , sBa = 0

s is nilpotent: s2 = 0
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Perturbative beta function

perturbation theory: one-loop beta function

β(gR) = µ2 d

dµ2
gR(µ) =

g3
R

(4π)2

„

Nf

3
−

11N

6

«

negative for Nf < 11N/2 (= 33/2 for proper QCD)

running coupling constant

g2
R(µ)

4π
=

2π

(11N/6 − Nf /3) ln(µ2/Λ2
QCD)

asymptotic freedom for µ≫ ΛQCD, Landau pole at µ = ΛQCD

gluons are responsible for asymptotic freedom and Landau pole (also for quark
confinement: lattice calculations), from now on put Nf = 0: no dynamical quarks,
“quenched QCD” or SU(N) Yang-Mills theory
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Gribov copies

problem with the Faddeev-Popov procedure: A
U
µ 6= Aµ with ∂µA

U
µ = 0 = ∂µAµ exist,

“Gribov copies”

for infinitesimal gauge transformations

∂µA
U
µ = ∂µAµ + ∂µDµω

Gribov copies exist (at least) when (−∂µDµ) has zero modes

Gribov (1978) suggests to restrict the integration over A to the (first) Gribov region Ω
where (−∂µDµ) is positive definite

Z

D[A] →

Z

Ω
D[A]

boundary of Ω: the (first) Gribov horizon ∂Ω, det(−∂µDµ) = 0

no Landau pole can arise, restriction to Ω breaks BRST symmetry (softly)
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Horizon function

possible implementation: Zwanziger (1994)
Z

Ω
D[A] =

Z

D[A] θ(−∂µDµ) =

Z

D[A] exp
„

−γ4
Z

d4x h(x)

«

h(x) = g2f abc f cdeAb
ν

ˆ

(−∂µDµ)−1˜ad Ae
ν

with the horizon condition (to fix γ2)

〈h(x)〉 = 4(N2 − 1)

local formulation

LFP → LGZ = LFP − ∂µφ̄
ac
ν Dab

µ φbc
ν + ∂µω̄

ac
ν Dab

µ ωbc
ν − gf abc∂µω̄

ad
ν Dbe

µ ceφcd
ν

− γ2ˆgf abcAa
µφ

bc
µ + gf abcAa

µφ̄
bc
µ + 4(N2 − 1)γ2˜

and
˙

gf abcAa
µ(φbc

µ + φ̄bc
µ )
¸

= 8(N2 − 1)γ2

with bosonic and fermionic auxiliary fields φab
µ and ωab

µ : “Gribov-Zwanziger framework”
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Propagators and condensates

tree-level propagators: gluon propagator IR suppressed, ghost propagator IR enhanced

〈Aa
µ(p)Ab

ν(−p)〉 =
p2

p4 + λ4
δab
„

δµν −
pµpν

p2

«

, λ4 = 2g2Nγ4

〈ca(p)c̄b(−p)〉 ∝
1

p4
δab for p2 ≪ Λ2

QCD

however, the auxiliary fields can form a condensate 〈φ̄ab
µ φ

ab
µ − ω̄ab

µ ωab
µ 〉 6= 0, then the

linear coupling of φab
µ and φ̄ab

µ to Aa
µ in LGZ generates a gluon mass term: “refined

Gribov-Zwanziger framework” by Dudal, Sorella, Vandersickel, Verschelde et al. (2008)

consequence for the tree-level propagators: finite suppression and enhancement

〈Aa
µ(p)Ab

ν(−p)〉 =
p2 + M2

p4 + M2p2 + λ4
δab
„

δµν −
pµpν

p2

«

p2 + M2

p4 + M2p2 + λ4
=

1

p2 + M2
eff(p

2)
, M2

eff(p
2) =

λ4

p2 + M2

〈ca(p)c̄b(−p)〉 ∝
1

p2
δab for p2 ≪ Λ2

QCD
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Present status

excellent agreement in the IR with lattice calculations in the (absolute) Landau gauge
upon including a further condensate 〈Aa

µAa
µ〉

〈Aa
µ(p)Ab

ν(−p)〉 =
p2 + M2

p4 + (M2 + m2)p2 + λ4 + M2m2
δab
„

δµν −
pµpν

p2

«

and fitting the parameters M2 and m2

complete calculation of the condensates and one-loop corrections to the propagators
very demanding
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Gluon propagator
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p  [GeV]
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1
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9
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D
(p

2 ) 
 [

G
eV

-2
]

β = 6.0  -  64
4

Fit - p
max

 = 0.948 GeV [χ2
/dof = 1.1]

Fit - p
max

 = 1.243 GeV [χ2
/dof = 1.7]

Renormalized Gluon Propagator  -  µ = 3 GeV

M
2
 = 2.579(60) GeV

2

M
2
 + m

2
 = 0.536(23) GeV

2

λ4
 = 0.2828(52) GeV

4

M
2
 = 2.448(44) GeV

2

M
2
 + m

2
 = 0.491(18) GeV

2

λ4
 = 0.2708(37) GeV

4

p
max

 = 0.948 GeV p
max

 = 1.243 GeV

Dudal, Oliveira and Vandersickel (2010)
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Gluon dressing function
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Renormalized Gluon Dressing Function  -  µ = 3 GeV
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General setup

observation: restriction to Ω leaves Dyson-Schwinger equations unchanged (and hence
the perturbative expansion), no contributions from ∂Ω since det(−∂µDµ) = 0 there

however, BRST symmetry is (softly) broken, (re)normalization conditions may be
different

assume IR suppressed gluon propagator and IR enhanced ghost propagator (check
self-consistency a posteriori), “ghost dominance”: diagrams with maximal number of
ghost propagators dominate in the IR

Taylor’s non-renormalization theorem for the ghost-gluon vertex

simple closed set of Dyson-Schwinger equations for the IR-propagators

“

p

”−1
= ZAp2 −

p

“

p

”−1
= Zcp2 −

p
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Results

numerical solutions over the whole momentum range (see Pietro Dall’Olio’s talk)

Zwanziger (2002): analytical solutions in the IR approximation

〈Aa
µ(p)Ab

ν(−p)〉 =
G(p2)

p2
δab
„

δµν −
pµpν

p2

«

, 〈ca(p)c̄b(−p)〉 =
F (p2)

p2
δab

G(p2) ∝ (p2)−αG , F (p2) ∝ (p2)−αF

for dimensions 2 ≤ D ≤ 4

scaling solutions, first found by von Smekal, Hauck and Alkofer (1997) in D = 4
dimensions

sum rule αG + 2αF =
D

2
− 2

solution 1: αF (D) =
D − 2

2
, αG(D) = −

D

2

solution 2: αF (D) ≈
D − 1

5
, αG(D) ≈ −

16 − D

10

αF > 0, 1 + αG < 0, except for solution 1 at D = 2: αF = 1 + αG = 0
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Scaling vs. decoupling solutions

dimensionless running coupling constant (from Taylor’s theorem)

g2
R(p2) = (p2)(D−4)/2 G(p2) F 2(p2) g2

goes to a finite IR fixed point value (goes to zero for solution 1 at D = 2)

decoupling solution: αF = 1 + αG = 0 for any dimension D, g2
R(p2) → 0 for p2 → 0,

consistent with lattice calculations and the refined Gribov-Zwanziger framework (except
at D = 2 where lattice calculations show scaling behavior)

from the Dyson-Schwinger equations alone one cannot decide which one of the
solutions is physically realized

it is unclear how the results could be systematically improved

Axel Weber IR fixed point of Yang-Mills theory



Yang-Mills theory: gluons and ghosts
Gauge copies: Gribov horizon and condensates

Dyson-Schwinger equations: scaling and decoupling solutions
Renormalization group equations: epsilon expansion, horizon condition

Conclusions

Contents

1 Yang-Mills theory: gluons and ghosts

2 Gauge copies: Gribov horizon and condensates

3 Dyson-Schwinger equations: scaling and decoupling solutions

4 Renormalization group equations: epsilon expansion, horizon condition

5 Conclusions

Axel Weber IR fixed point of Yang-Mills theory



Yang-Mills theory: gluons and ghosts
Gauge copies: Gribov horizon and condensates

Dyson-Schwinger equations: scaling and decoupling solutions
Renormalization group equations: epsilon expansion, horizon condition

Conclusions

A gluon mass term

Dyson-Schwinger results reminiscent of critical phenomena, most successful tool:
renormalization group equations of Callan-Symanzik type in an epsilon expansion,
systematic approach with analytical (perturbative) input

(soft) BRST breaking: introduce a mass m for the gluons in LFP , the only perturbatively
relevant parameter that can arise

Lm
FP = LFP +

1

2
Aa

µm2Aa
µ

for the IR physics, the new mass term dominates over the (Aa
µp2Aa

µ)-contribution from
1
4 F a

µνF a
µν
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Example

one-loop ghost self-energy

pp−k

k

= Ng2δab
Z

dDk

(2π)D
pµ

1

(p − k)2
(pν − kν)

1

k2 + m2

„

δµν −
kµkν

k2

«

= −
1

2

Ng2

4π
δab p2

m2

"

ln
p2

m2
− 1 −

1

2

p2

m2
+ O

„

“ p2

m2

”2
«

#

for p2 ≪ m2, D = 2 + ǫ

with the gluon propagator
1

m2

„

δµν −
kµkν

k2

«

instead

p
= −

1

2

Ng2

4π
δab p2

m2

"

2

ǫ
+ γE − ln(4π) + ln

p2

κ2

#

same result for p2 ≪ m2 after renormalizing the (c̄ap2ca)-term in Lm
FP
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New scaling dimensions

for the IR analysis, neglect the ( 1
4 F a

µνF a
µν)-term in the action Lm

FP

scaling analysis: invariance under x → x/s, s > 1, of the non-interacting part of Lm
FP

(g = 0) implies
Aa

µ(x) → sD/2Aa
µ(sx)

the scaling (canonical) dimension of Aa
µ changes, equivalent to writing the action in

terms of Ãa
µ = mAa

µ

consequence: ghost-gluon coupling is relevant only for D < 2, three- and four-gluon
couplings become irrelevant, also (Aa

µp2Aa
µ) becomes an irrelevant local operator

keep only the relevant terms in the Lagrangian

Lm
FP =

1

2
Aa

µm2Aa
µ + iBa ∂µAa

µ + ∂µc̄a Dab
µ cb

do an epsilon expansion around the upper critical dimension D = 2, ghost dominance
arises from the irrelevance of three- and four-gluon vertices
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Implementing the ǫ-expansion

calculate gluon and ghost self-energies to one-loop order in D = 2 + ǫ dimensions
from Lm

FP

p
=

1

2

Nḡ2

4π
δabm2

" 

2

ǫ
+ γE − ln(4π) + ln

p2

κ2
− 2

!

δµν + 2
pµpν

p2

#

with the dimensionless coupling constant ḡ

introduce renormalized fields Aa
µ = Z 1/2

A Aa
R,µ, ca = Z 1/2

c ca
R , fix ZA,Zc through

normalization conditions

〈Aa
R,µ(p)Ab

R,ν(−p)〉
˛

˛

p2=µ2 =
1

m2
δab
„

δµν −
pµpν

p2

«

〈ca
R c̄b

R〉
˛

˛

p2=µ2 =
1

µ2
δab

at the renormalization scale µ
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The beta function

use the renormalized proper ghost-gluon vertex at the symmetric point for the definition
of the dimensionless renormalized coupling constant ḡR(µ)

crank the handle: beta function to first order in ǫ (and ḡ2
R )

β(ǫ, ḡR) = µ2 d

dµ2
ḡR(µ) =

1

2
ḡR

 

ǫ

2
−

1

2

Nḡ2
R

4π

!

for ǫ > 0

ḡ2
R

β

IR flow

two fixed points: ḡ2
R = 0 (IR-stable),

Nḡ2
R

4π
= ǫ (IR-unstable)
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Results

unstable (nontrivial) fixed point gives exactly the DSE scaling solution 1

〈Aa
R,µ(p)Ab

R,ν(−p)〉 =
1

m2

„

p2

µ2

«ǫ/2

δab
„

δµν −
pµpν

p2

«

〈ca
R(p)c̄b

R(−p)〉 =
1

p2

„

µ2

p2

«ǫ/2

δab

approach to the stable (trivial) fixed point: running coupling constant

Nḡ2
R(µ)

4π
=

(µ2/Λ2)ǫ/2

1 + (µ2/Λ2)ǫ/2
ǫ

with a reference scale Λ

IR-behavior of the propagators

〈Aa
R,µ(p)Ab

R,ν(−p)〉 =
1

m2

1 + (p2/Λ2)ǫ/2

1 + (µ2/Λ2)ǫ/2
δab
„

δµν −
pµpν

p2

«

〈ca
R(p)c̄b

R(−p)〉 =
1

p2

1 + (µ2/Λ2)ǫ/2

1 + (p2/Λ2)ǫ/2
δab
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Discussion

stable fixed point produces decoupling solutions for D > 2, in qualitative agreement
with lattice calculations at D = 3, 4, with β = 0 for the gluon propagator at D = 4

adding the irrelevant operator (Aa
µp2Aa

µ) to the action (no anomalous dimension at
one-loop level) gives for the gluon propagator at D = 4

〈Aa
R,µ(p)Ab

R,ν(−p)〉 ∝

 

p2 + m2 1 + µ2/Λ2

1 + p2/Λ2

!−1

exactly the form of the gluon propagator in the refined Gribov-Zwanziger framework
(without the 〈Aa

µAa
µ〉-condensate) with effective mass

M2
eff(p

2) =
m2(µ2 + Λ2)

p2 + Λ2

at D = 2, the only fixed point ḡ2
R = 0 becomes IR-unstable, coincident with lattice

calculations which find a scaling solution and not the decoupling solution for D = 2
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Horizon condition

motivated by the (unrefined) Gribov-Zwanziger framework, one may implement the
“horizon condition” F (p2) → ∞ for p2 → 0 as a normalization condition, replacing the
(c̄ap2ca)-term in Lm

FP with
1

b2
∂µc̄a(−∂2)∂µca

(isotropic) Lifshitz point for the ghost fields

the scaling analysis about g = 0 now yields a relevant ghost-gluon coupling for D < 6,
the three- and four-gluon couplings and the operator (Aa

µp2Aa
µ) remain irrelevant

to implement the epsilon expansion around the upper critical dimension D = 6,
calculate the (one-loop) gluon and ghost self-energies in D = 6 − ǫ dimensions with
the bare ghost propagator b2/p4

proceeding as before yields the beta function

β(ǫ, ḡR) = µ2 d

dµ2
ḡR(µ) = −

1

2
ḡR

 

ǫ

2
−

1

2

Nḡ2
R

4π

!

for the dimensionless renormalized coupling constant ḡR(µ)
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IR-stable nontrivial fixed point

for ǫ > 0

ḡ2
R

β

IR flow

here the nontrivial fixed point
Nḡ2

R

4π
= ǫ is IR-stable and leads to the propagators

〈Aa
R,µ(p)Ab

R,ν(−p)〉 =
1

m2

„

p2

µ2

«ǫ/12

δab
„

δµν −
pµpν

p2

«

〈ca
R(p)c̄b

R(−p)〉 =
b2

p4

„

p2

µ2

«5ǫ/24

δab
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Correspondence to Dyson-Schwinger solution

in terms of the anomalous dimensions αF and αG

αF (D) =
5D − 6

24
, αG(D) = −

18 − D

12

to be compared to the scaling solution 2 of the Dyson-Schwinger equations

αF (D) ≈
5D − 5

25
, αG(D) ≈ −

16 − D

10

the values are very close: exact coincidence at D = 6 (also with the trivial fixed point),
largest deviation in the range 2 ≤ D ≤ 4 for D = 2:

„

αF =
1

6
, αG = −

8

6

«

vs.
„

αF =
1

5
αG = −

7

5

«

however, the fixed point is unstable with respect to perturbations of the local operator
(c̄ap2ca), even more when one-loop corrections to the latter are taken into account

since there is no reason (any more) to implement the “horizon condition” of the
unrefined Gribov-Zwanziger framework, even the IR-stable Lifshitz fixed point has to
considered as unstable
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Final comments

the point of departure is the existence of a gluon mass term which is a natural
consequence of the BRST symmetry breaking, and implies ghost dominance

the (Callan-Symanzik) renormalization group equations generate all the IR solutions of
the Dyson-Schwinger equations in a completely analytic way (in an epsilon expansion)

in addition, it is possible to discuss the IR-stability of the solutions

as a result, only the decoupling solution is IR-stable and hence physical in dimensions
D > 2

the IR results of the refined Gribov-Zwanziger framework (without the
〈Aa

µAa
µ〉-condensate) and the lattice calculations are successfully reproduced for

D = 3, 4 (and 2)

the analytic calculations can be systematically improved by calculating to higher loop
order in perturbation theory

for a description of the complete momentum range, the crossover from the UV to the IR
fixed point has to be described
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Conclusions

Yang-Mills theory in Landau gauge: restrict the integration over the gluon field to the
(first) Gribov region to avoid gauge copies

implementation via horizon function: local formulation with auxiliary fields, absence of
the Landau pole, IR suppressed gluon propagator, IR enhanced ghost propagator

“refined Gribov-Zwanziger scenario”: condensates of auxiliary (and gluon) fields lead to
decoupling solutions in agreement with latest lattice results, calculation beyond
tree-level technically demanding

Dyson-Schwinger equations (and perturbative expansion) unchanged by restriction to
the Gribov region, (soft) BRST symmetry breaking: introduce a gluon mass term

renormalization group analysis of the IR fixed point with Callan-Symanzik equations in
an epsilon expansion: scaling and decoupling solutions, decoupling solutions are IR
stable in D = 3, 4 dimensions, unstable in D = 2 dimensions

Outlook: inclusion of local composite operators, description of the crossover from UV to
IR fixed point, condensates, quarks
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