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Yang-Mills theory: gluons and ghosts

Gluons

@ Euclidean QCD Lagrangian

— 1
L= 0 (imDp +m)ur + L FLFL,
f
@ L invariant under local gauge transformations
wawP:U¢f7 f:1727"'7Nf
U(x) =9 ¢ SUN), w=wT?, a=12...,N2-1

@ covariant derivative and gauge fields (gluons)
i
Dy =0u —igAu, Ap = AZT"", Fuw = 6 [Dy,Dy]

. 1
Fiv = 0uAl — 0uA% +gfCARAD [T TP =0T, a(TTP) = 2 6%

@ SU(N) gauge transformations
i
A — AL =U (A, + 68H>UT, D, — UD,UT

1 1
Fuw — UFUT n F2,F2, = 5tr(FWFW)
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Yang-Mills theory: gluons and ghosts

Ghosts

@ infinitesimal gauge transformations
S =igweyy ,  0AL = duw —ig[Ay,w] = Duw,  (Duw)? = 9uw? + gfACADWe
@ necessary for quantization: (covariant) gauge fixing
OuA, =0

@ change of variables: A,, = Kz, d,A,, = 0 (suppose A, U unique!)

/D[A] :/D[U]/D[K] det 7

~ [ o1 [ DIAI5 0.4, det(-9,0,)

:/D[U]/D[A]/D[B] exp (—i/d“x Baa,lAi) /D[c,é] exp (/d“x EaauDZbcb>

“Landau gauge”, B Nakanishi-Lautrup field, c, € ghosts: scalar fermion fields
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Yang-Mills theory: gluons and ghosts

BRST symmetry

@ Faddeev-Popov Lagrangian

/D[wf,ﬁf,Al exp (—/d“xc) a/D[wf,@f,A,B,c,él exp (—/d“xcpp)

1
Lep = wa (17D + M)ty + 7 FAFR, +B% 9,5 + 9,8° DiPc®

@ gauge symmetry is broken by the gauge fixing, but Lgp is invariant under BRST

transformations
; b.b
st = ige?T 3 , sA% =D%c
1 _ .
sc® = = gf¥ccPct, sE@=iB®, sB*=0
2

s is nilpotent: s2 = 0
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Yang-Mills theory: gluons and ghosts

Perturbative beta function

@ perturbation theory: one-loop beta function

_ 2 d _ 9% (N N
B(IR) = p ng(#)— (4r)? (g 6 )

negative for Ny < 11N /2 (= 33/2 for proper QCD)
@ running coupling constant

ga(p) 2
4r (11IN/6 —Ni/3)In(u?/Ncp)

asymptotic freedom for p > Agcp, Landau pole at 1 = Agcp

@ gluons are responsible for asymptotic freedom and Landau pole (also for quark
confinement: lattice calculations), from now on put Ny = 0: no dynamical quarks,
“quenched QCD” or SU(N) Yang-Mills theory
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Gauge copies: Gribov horizon and condensates

Gribov copies

@ problem with the Faddeev-Popov procedure: Kﬁ # A, with auﬂfj =0 = 9uA, exist,
“Gribov copies”

@ for infinitesimal gauge transformations
U _
OuA, = OuAy + OuDpw

Gribov copies exist (at least) when (—9,,D,,) has zero modes

@ Gribov (1978) suggests to restrict the integration over A to the (first) Gribov region Q
where (—9,,D,,) is positive definite

/D[A]—>/QD[A]

boundary of Q: the (first) Gribov horizon 99, det(—8,D,) =0
@ no Landau pole can arise, restriction to Q breaks BRST symmetry (softly)
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Gauge copies: Gribov horizon and condensates

Horizon function

@ possible implementation: Zwanziger (1994)

/QD[A] :/D[A] 8(~5,D,) :/D[A] exp (774/d4x h(x))

h(x) = g**°1%°A [(~,D,) )™ AT
with the horizon condition (to fix v2)
(h(x)) = 4(N* - 1)
@ |ocal formulation
Lep — Loz = Lep — Ou @D + 9,08 DPwE® — gf 35, 037 DI Ce pC!
_ '72 [gfabcAi¢Zc 4 gfabcAZq‘sic + 4(N2 _ 1)72]
and  (gf3CAZ (4P + ¢0%)) = 8(N? — 1)?

with bosonic and fermionic auxiliary fields ¢>jjb and wff’: “Gribov-Zwanziger framework”
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Gauge copies: Gribov horizon and condensates

Propagators and condensates

@ tree-level propagators: gluon propagator IR suppressed, ghost propagator IR enhanced

2
R EAP) = P 6% (= BB ) = 2gPny’

_ 1
(A (P)EP(p)) o 5 0™ for p? < Agep

@ however, the auxiliary fields can form a condensate (¢3°¢3> — £ w,3P) £ 0, then the
linear coupling of ¢Sib and ¢ to Aﬁ in Lgz generates a gluon mass term: “refined
Gribov-Zwanziger framework” by Dudal, Sorella, Vandersickel, Verschelde et al. (2008)

@ consequence for the tree-level propagators: finite suppression and enhancement

2 2
+M PuPv
A2 Ab _ _ P 5ab (6 L — H )
< ,u,(p) 1/( p)> p4 T M2p2 4 A4 M pz
2 2 4
+ M 1 A
P - MZ(p?) =

p4+M2p2+)\4 p2+Merf(p2) ’ p2+M2

~ 1
(c¥(p)E°(—p)) o 5 for p® < Aep
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Gauge copies: Gribov horizon and condensates

Present status

@ excellent agreement in the IR with lattice calculations in the (absolute) Landau gauge
upon including a further condensate (A% A%)

2 2
+M PuPv
A2 Ab _ — p 5ab (5 v — . )
< u(p) u( p)> p4+(M2+m2)p2+>\4+M2m2 K p2

and fitting the parameters M2 and m?2

@ complete calculation of the condensates and one-loop corrections to the propagators
very demanding
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Gauge copies: Gribov horizon and condensates

pagator

Renormalized Gluon Propagator - p =3 GeV

10 TP T T
e B=60- 64"
— Fit-p,,, =0.948 GeV [x’/dof = 1.1]
Fit- p,, = 1.243 GeV [ /dof = 1.7]
M? = 2.579(60) Gev? M? = 2.448(44) Gev®
o E M+ m’ = 0.536(23) GeV> M?+ m® = 0.491(18) GeV>
g k A =0.2828(52) Gev* A" =0.2708(37) Gev*
— E Py = 0.948 GeV P = 1243 GeV
o E
g 4t
N I o " o I \
0 1 2 3 4 6 7
p [GeV]

Dudal, Oliveira and Vandersickel (2010)
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Gauge copies: Gribov horizon and condensates

Gluon dressing function

Renormalized Gluon Dressing Function - p =3 GeV

e B=60- 64
— Fit-p,,, =0.948GeV [x/dof =1.1] |
Fit - P, = 1.243 GeV [x’/dof = 1.7]

P’ DY)

p [GeV]
Dudal, Oliveira and Vandersickel (2010)
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Dyson-Schwinger equations: scaling and decoupling solutions

General setup

@ observation: restriction to Q leaves Dyson-Schwinger equations unchanged (and hence
the perturbative expansion), no contributions from 9 since det(—9,,D,.) = 0 there

@ however, BRST symmetry is (softly) broken, (re)normalization conditions may be
different

@ assume IR suppressed gluon propagator and IR enhanced ghost propagator (check
self-consistency a posteriori), “ghost dominance”: diagrams with maximal number of
ghost propagators dominate in the IR

@ Taylor's non-renormalization theorem for the ghost-gluon vertex
@ simple closed set of Dyson-Schwinger equations for the IR-propagators

(o ) = 2 ot

(—«—Q—ﬂ) )71 = Zcp2 - 77(75‘:2*"
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Dyson-Schwinger equations: scaling and decoupling solutions

Results

@ numerical solutions over the whole momentum range (see Pietro Dall'Olio’s talk)
@ Zwanziger (2002): analytical solutions in the IR approximation

a G 2 al v a _ F 2 al
<AH(P)AB(—P)) = % 5eb (6“1, — p;[z) ) , (c (p)cb(—p)> _ %5 b

G(p?) o (p?)?¢,  F(p?) o (p?)OF

for dimensions 2 < D < 4
@ scaling solutions, first found by von Smekal, Hauck and Alkofer (1997) inD = 4

dimensions

D
sum rule ag + 2aF = i 2

D-2 D
solution 1: ap(D) = — ag(D) = -5
-1 16 — D
solution 2: D)~ —— D)~ —
ap(D) 5 ag(D) 10

ap > 0,1+ ag < 0, except for solutionlatD =2 af =1+ ag =0
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Dyson-Schwinger equations: scaling and decoupling solutions

Scaling vs. decoupling solutions

@ dimensionless running coupling constant (from Taylor’s theorem)
g&(P?) = (P*)P~ /2 G(p?) F?(p*) ¢

goes to a finite IR fixed point value (goes to zero for solution 1 at D = 2)

@ decoupling solution: ag = 1 + ag = 0 for any dimension D, g3 (p?) — 0 for p2 — 0,
consistent with lattice calculations and the refined Gribov-Zwanziger framework (except
at D = 2 where lattice calculations show scaling behavior)

@ from the Dyson-Schwinger equations alone one cannot decide which one of the
solutions is physically realized

@ it is unclear how the results could be systematically improved
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Renormalization group equations: epsilon expansion, horizon condition

A gluon mass term

@ Dyson-Schwinger results reminiscent of critical phenomena, most successful tool:
renormalization group equations of Callan-Symanzik type in an epsilon expansion,
systematic approach with analytical (perturbative) input

9 (soft) BRST breaking: introduce a mass m for the gluons in Lgp, the only perturbatively
relevant parameter that can arise

1
,C',PP = EFP -+ EAZmzAi

@ for the IR physics, the new mass term dominates over the (A‘;pzAi)-contribution from

lpa gpa
4FWFW
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Renormalization group equations: epsilon expansion, horizon condition

Example

@ one-loop ghost self-energy

e @mP ™ (p— k)2

k
dPk 1 1 K, k.,
LTy e [ n e ) s (s - )

_INg® . p? p2 1 p? p? \2
=52 e "~ om0 ()

forp2 < m?2,D=2+¢

. 1 K. ke
@ with the gluon propagator v (6;“, -

kZ

) instead

_ _Enggab pz

p 2 4w m?2

€ Iiz

2 2
7+’yE—|n(47r)+|np :|

@ same result for p? < m? after renormalizing the (€2p2c?)-term in L1,
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Renormalization group equations: epsilon expansion, horizon condition

New scaling dimensions

@ for the IR analysis, neglect the (%FﬁyFﬁu)-term in the action LT,

@ scaling analysis: invariance under x — x /s, s > 1, of the non-interacting part of L,
(g = 0) implies
2
A2 (x) — sb/ A2 (sx)
the scaling (canonical) dimension of A% changes, equivalent to writing the action in
terms of A% = mA2

@ consequence: ghost-gluon coupling is relevant only for D < 2, three- and four-gluon
couplings become irrelevant, also (AipzAi) becomes an irrelevant local operator

@ keep only the relevant terms in the Lagrangian

1ham2 : =a pab b
LE = 5Af‘tm A% +iB%9,A% + 9,88 D c

do an epsilon expansion around the upper critical dimension D = 2, ghost dominance
arises from the irrelevance of three- and four-gluon vertices
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Renormalization group equations: epsilon expansion, horizon condition

Implementing the e-expansion

@ calculate gluon and ghost self-energies to one-loop order in D = 2 + ¢ dimensions
from LT,

iy = ENE o
P 2 4rm

2 p PuPy
<€+VE—|”(47T)+|”HZ—2>5W+2 02
with the dimensionless coupling constant g

@ introduce renormalized fields Af, = Zl/zAa Zl/2 2. fix Za, Z¢ through
normalization conditions

1 PuPy
(88 PR (P e = oz 0% (5,0 — P2 )

m p2
1
<CscR>|p2:M2 = E 6%
at the renormalization scale p
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Renormalization group equations: epsilon expansion, horizon condition

The beta function

@ use the renormalized proper ghost-gluon vertex at the symmetric point for the definition
of the dimensionless renormalized coupling constant gr (1)

@ crank the handle: beta function to first order in ¢ (and gé)

_ d _ 1_ € 1 Ng3
=2 = — —_ - °R
B(e,0r) = Or (1) 5 OR <2 2 n )

dp?
@ fore >0
B
IR flow
l \ 9k
. o, NGZ
@ two fixed points: g5 = 0 (IR-stable), A = € (IR-unstable)
s
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Renormalization group equations: epsilon expansion, horizon condition

Results

@ unstable (nontrivial) fixed point gives exactly the DSE scaling solution 1

1 2\ €/2 y
(88, R, (P = oz (B ) 0% (B - P25

1 2\ €/2

=b _ [ b
(cR(P)CR(—P)) = o2 (piz) &

@ approach to the stable (trivial) fixed point: running coupling constant

Néé(u): (u?/N2)</? .
4r 1+ (u2/N2)e/?

with a reference scale A
@ IR-behavior of the propagators

a _ 1 14 (p?/AN?)</? al PuPv
(AR W PR (P) = 5 T (e 72 2y b (W - )
/= 114 (uB/N)2
(cR(P)ER(—P)) = 0 11 (02 /ND) T2 °
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Renormalization group equations: epsilon expansion, horizon condition

Discussion

@ stable fixed point produces decoupling solutions for D > 2, in qualitative agreement
with lattice calculations at D = 3, 4, with 8 = 0 for the gluon propagator at D = 4

@ adding the irrelevant operator (AZpZAz) to the action (no anomalous dimension at
one-loop level) gives for the gluon propagator at D = 4

-1
2 1+#2//\2>

(A% L (P)AR,(—P)) o (pz+m 11 p?/N2

exactly the form of the gluon propagator in the refined Gribov-Zwanziger framework
(without the (A% A% )-condensate) with effective mass
M2 ( 2) _ mz(iu‘z +A2)
eff(P™) = p2 4 A2

@ at D = 2, the only fixed point Qé = 0 becomes IR-unstable, coincident with lattice
calculations which find a scaling solution and not the decoupling solution for D = 2
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Renormalization group equations: epsilon expansion, horizon condition

Horizon condition

@ motivated by the (unrefined) Gribov-Zwanziger framework, one may implement the
“horizon condition” F (p?) — oo for p? — 0 as a normalization condition, replacing the
(c@p2c®)-term in LT, with

1, -
3 8,€3(—8%)d,,c?

(isotropic) Lifshitz point for the ghost fields

@ the scaling analysis about g = 0 now yields a relevant ghost-gluon coupling for D < 6,
the three- and four-gluon couplings and the operator (AszAZ) remain irrelevant

@ to implement the epsilon expansion around the upper critical dimension D = 6,
calculate the (one-loop) gluon and ghost self-energies in D = 6 — e dimensions with

the bare ghost propagator b? /p*
@ proceeding as before yields the beta function
6 [ € - LNGR
R\ 27 2%
for the dimensionless renormalized coupling constant ggr (x)
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Renormalization group equations: epsilon expansion, horizon condition

IR-stable nontrivial fixed point

@ fore >0

>
Qi
N

IR flow

N F2
@ here the nontrivial fixed point % = ¢ is IR-stable and leads to the propagators
s

1 (p2\* PuPy
(AR u(PIAR,(—P)) = — (—2) 5% (5W - fsz)

w
_ b2 /p2 5/
CREIRP) = (E) 57
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Renormalization group equations: epsilon expansion, horizon condition

Correspondence to Dyson-Schwinger solution

@ in terms of the anomalous dimensions aF and ag

5D 6 18-D
= , D)= —
24 o (D) 12

ar(D)

to be compared to the scaling solution 2 of the Dyson-Schwinger equations

5D -5
ap(D) = T

16 - D

ag(D) = 0

@ the values are very close: exact coincidence at D = 6 (also with the trivial fixed point),
largest deviation in the range 2 < D < 4 for D = 2:

1 8 e 1 7
aF ==, ag=—= . oF = = ap = ——
F™ 6 G 6 F~g ©¢ 5

@ however, the fixed point is unstable with respect to perturbations of the local operator
(C2p?c?), even more when one-loop corrections to the latter are taken into account

@ since there is no reason (any more) to implement the “horizon condition” of the
unrefined Gribov-Zwanziger framework, even the IR-stable Lifshitz fixed point has to
considered as unstable
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Renormalization group equations: epsilon expansion, horizon condition

Final comments

]

o

the point of departure is the existence of a gluon mass term which is a natural
consequence of the BRST symmetry breaking, and implies ghost dominance

the (Callan-Symanzik) renormalization group equations generate all the IR solutions of
the Dyson-Schwinger equations in a completely analytic way (in an epsilon expansion)

in addition, it is possible to discuss the IR-stability of the solutions
as a result, only the decoupling solution is IR-stable and hence physical in dimensions
D>2

the IR results of the refined Gribov-Zwanziger framework (without the
(AZAz)-condensate) and the lattice calculations are successfully reproduced for

D = 3,4 (and 2)

the analytic calculations can be systematically improved by calculating to higher loop
order in perturbation theory

for a description of the complete momentum range, the crossover from the UV to the IR
fixed point has to be described
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Conclusions

Conclusions

@ Yang-Mills theory in Landau gauge: restrict the integration over the gluon field to the
(first) Gribov region to avoid gauge copies

@ implementation via horizon function: local formulation with auxiliary fields, absence of
the Landau pole, IR suppressed gluon propagator, IR enhanced ghost propagator

9 “refined Gribov-Zwanziger scenario”: condensates of auxiliary (and gluon) fields lead to
decoupling solutions in agreement with latest lattice results, calculation beyond
tree-level technically demanding

@ Dyson-Schwinger equations (and perturbative expansion) unchanged by restriction to
the Gribov region, (soft) BRST symmetry breaking: introduce a gluon mass term

@ renormalization group analysis of the IR fixed point with Callan-Symanzik equations in
an epsilon expansion: scaling and decoupling solutions, decoupling solutions are IR
stable in D = 3,4 dimensions, unstable in D = 2 dimensions

@ Outlook: inclusion of local composite operators, description of the crossover from UV to
IR fixed point, condensates, quarks
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