
Reconciling Supersymmetry and
Thermal Leptogenesis

Jörn Kersten

University of Hamburg

Based on Jasper Hasenkamp, JK, arXiv:1008.1740 [hep-ph]

1 / 22



Outline

1 The Gravitino Problem

2 Entropy Production

3 Candidates for Entropy Producers

2 / 22



1 The Gravitino Problem

2 Entropy Production

3 Candidates for Entropy Producers

3 / 22





Supersymmetry

Symmetry between fermions and bosons
Superpartner for each Standard Model particle:
different spin, other properties equal

Bino
Neutral Wino
2 Higgsinos

 −→ −→ 4 neutralinos

Gravitino (in supergravity)
Lightest superpartner (LSP) stable ; dark matter candidate
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Leptogenesis

Gauge singlet neutrinos N
Large Majorana masses MR & 109 GeV
Related to light neutrino masses: see-saw mechanism
C, CP violation in decays
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|ε| = Γ(N → `H)− Γ(N → ` H)

Γ(N → `H) + Γ(N → ` H)
<

3
16π

MR

√
∆m2

atm

v2

; lepton asymmetry ∝ |ε|

Sphalerons (non-perturbative processes)
; baryon asymmetry ηB = nB

nγ
∝ |ε| < MR · . . .

Observed ηB ∼ 6 · 10−10 ; MR & 2 · 109 GeV
Thermal leptogenesis: N produced thermally at T > MR

TR & 2 · 109 GeV
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Gravitino Production

Thermal production at high temperature

Ωtp
3/2h2 ' 0.11

(
TR

2 · 109 GeV

) ( Meg
103 GeV

)2 (
67 GeV

m3/2

)

Observed dark matter abundance: ΩDMh2 ' 0.11

; Compatible with thermal leptogenesis:
Gravitino LSP with mass & 60 GeV
Heavier non-LSP gravitino
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WIMP Freeze-Out

1 10 100 1000

0.0001

0.001

0.01

Weakly interacting
stable particle χ

Thermal equilibrium:
Nχ ∝ e−T/mχ

Annihilation rate
Γ(χχ → xy) < H
; freeze-out:

Nχ = const.
; relic density Ωχ

determined

Tfo ∼
mχ

25
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Big Bang Nucleosynthesis

T ∼ 1 MeV or t ∼ 1 s:
freeze-out of n ↔ p
; n/p ratio fixed
T ∼ 0.1 MeV: p + n → D
Afterwards formation of
3He, 4He, 7Li
Abundances depend on
baryon density (ΩB or ηB)
Agree with observations for
standard cosmology

20. Big-Bang nucleosynthesis 3
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Figure 20.1: The abundances of 4He, D, 3He, and 7Li as predicted by the standard
model of Big-Bang nucleosynthesis [11] − the bands show the 95% CL range. Boxes
indicate the observed light element abundances (smaller boxes: ±2σ statistical
errors; larger boxes: ±2σ statistical and systematic errors). The narrow vertical
band indicates the CMB measure of the cosmic baryon density, while the wider
band indicates the BBN concordance range (both at 95% CL). Color version at end
of book.

July 30, 2010 14:36
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Gravitino Problem

Gravitino interacts via gravity
; extremely weakly
; lifetime ∼ 10−2 s . . . years
Energetic decay products
destroy nuclei produced in
Big Bang Nucleosynthesis
Distortions of the Cosmic
Microwave Background
(less constraining)

; TR . 107 GeV or m3/2 � 1 TeV
; Conflict with thermal leptogenesis, or unnatural spectrum
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Big Bang Nucleosynthesis with Gravitino LSP

Gravitino LSP: Next-to-LSP (NLSP) long-lived
BBN bounds depend on kind of NLSP
Assume ΩNLSP to be given by thermal relic density
Neutralino ruled out unless very heavy
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Hadronic BBN bounds

m3/2 = 100GeV with: M2 = 2200, M3 = 2200, tanβ = 10, sign(µ)=1.

B̃

W̃

H̃

Stau decays can be ok, but bound states with nuclei change
BBN reaction rates ; overproduction of 6Li

Sneutrino mostly harmless

; Gravitino problem remains as NLSP decay problem
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Solutions

Abandon SUSY
Abandon thermal leptogenesis
Fine-tune to exploit loopholes
Very heavy gravitino
Gravitino LSP + harmless NLSP

New interactions ; faster decay
Very light gravitino ; faster decay, Ω3/2 6∝ TR
Harmless decay products
Abundance smaller than thermal relic abundance

Arbitrary combinations
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NLSP Dilution by Entropy Production

BBN bounds depend on ΩNLSP ∝
N
S

S = comoving entropy density
Increase of entropy after freeze-out: S → S ∆

; dilution of NLSP density: ΩNLSP →
ΩNLSP

∆
; reduction of impact on BBN

Entropy from decay of non-relativistic particle φ

ρφ

ρrad
∝ R−3

R−4 = R

; φ dominates energy density at some time t=, temperature T=

Candidates: later
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Constraints

Radiation domination at NLSP freeze-out:

T= < Tfo ∼
mNLSP

25
; standard calculation of ΩNLSP applies (φ can be ignored)

Decay before BBN:

Tdec = T (τφ) & (0.7 . . . 4) MeV

; Maximal dilution factor:

∆ ' 0.75
T=

Tdec
. 750

( mNLSP

100 GeV

)
∼ 103
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Other Effects of Entropy

, ΩNLSP → ΩNLSP
∆

, Gravitino density: Ω3/2 →
Ω3/2
∆

/ Baryon asymmetry: ηB → ηB
∆

Remember ηB ∝ MR and TR & MR

; To keep observed ηB:
MR → MR∆ and TR → TR∆

; Ω3/2 ∝ TR unchanged

Without ∆ With ∆

ηB ηB
TR TR ∆

Ω3/2 Ω3/2

ΩNLSP
ΩNLSP

∆

Strong washout of ηB for MR & 1013 GeV ; slower increase
; observed ηB can only be reached for ∆ . 103 . . . 104
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Neutralino NLSP with Entropy Production

Gravitino LSP,
m3/2 = 100 GeV
Neutralino NLSP,
100 GeV < mNLSP < 2 TeV
∆ = 103

Light neutralinos allowed for significant higgsino or wino content
Pure binos remain excluded

; Thermal leptogenesis possible
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General Requirements

1 Tdec < Tfo ; dilute ΩNLSP

2 Tdec & 4 MeV ; BBN ok
3

ρφ

ρrad
(Tdec) > 1 ; ∆ � 1

4
ρφ

ρrad
(Tfo) < 1 ; standard NLSP freeze-out

5 Br(φ → NLSP) ' 0 ; solution of NLSP decay problem
6 Br(φ → Gravitino) ' 0 ; correct Ωtp

3/2 = ΩDM

7 Compatibility with gravitino DM (e.g., gravitino remains stable)
8 Well-behaved superpartners

Generic or necessary for long-lived particles even without demanding
entropy production
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Entropy from Saxion Decays

Strong CP problem ; Peccei-Quinn mechanism ; axion
SUSY: axion supermultiplet (axion, saxion φ, axino)
Interactions suppressed by characteristic scale fa & 109 GeV

Saxion produced in thermal equilibrium for

TR & 1012 GeV
(

fa
1012 GeV

)2

Correct Ωtp
3/2 ; need ∆ ∼ 103 for fa = 1012 GeV

Dominant decay φ → gg ; dilution factor:

∆ & 55
(

fa
1012 GeV

) 2
3

� 103 /
Failure due to conflicting requirements:

Sufficient production ; strong coupling (small fa)
Late decay ; weak coupling (large fa)

Generic if same coupling responsible for production and decay
Further problem with axino
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Non-Thermally Produced Saxion

Saxion field displaced from potential minimum during inflation
Oscillations around minimum ; non-relativistic particles
Production and decay decoupled ; consistent scenario

Example with maximal dilution factor:

∆ ∼ 103

Saxion mass ∼ 10 GeV
Axino mass ∼ 1 TeV

fa ∼ 1010 GeV

Initial amplitude ∼ 104 fa
mNLSP ' 200 GeV

m3/2 ' 100 GeV
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Conclusions

Gravitino problem in SUSY scenarios with thermal leptogenesis
Solution: gravitino LSP, dilution of NLSP by entropy
Neutralino NLSP with large higgsino or wino component ok
Constraints on entropy-producing particle
Thermally produced particles fail
Saxion produced in oscillations works
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