

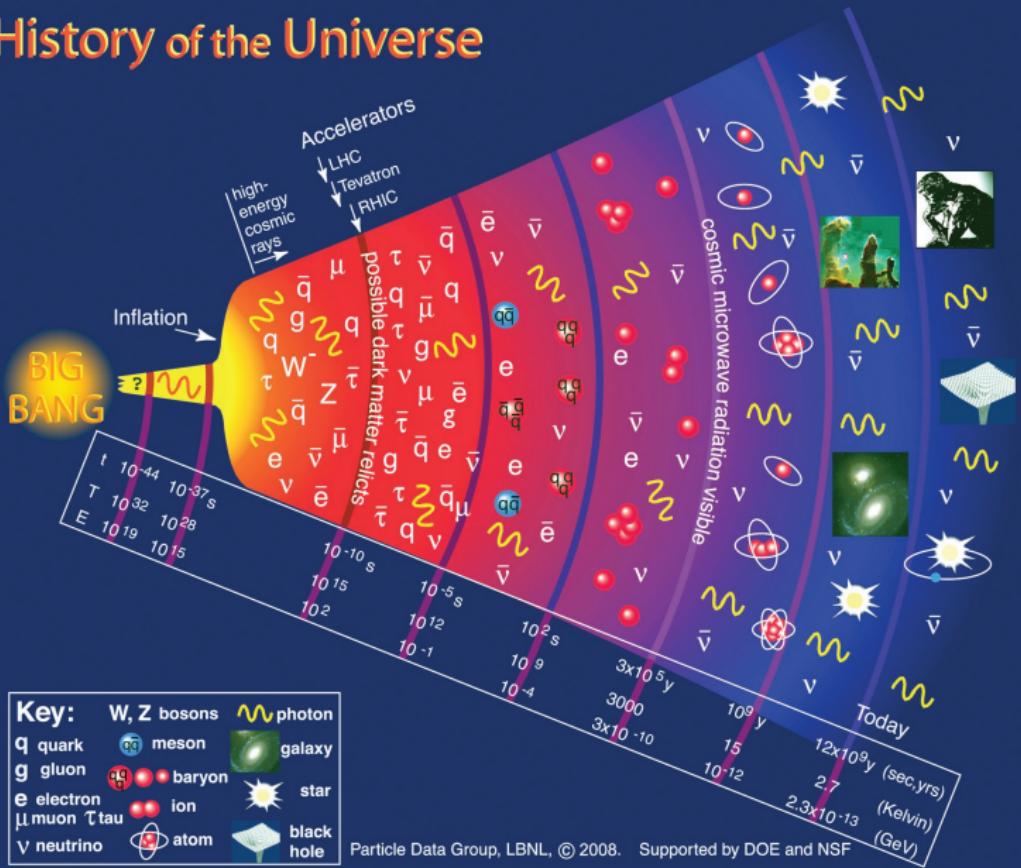
Reconciling Supersymmetry and Thermal Leptogenesis

Jörn Kersten

University of Hamburg

Based on Jasper Hasenkamp, JK, arXiv:1008.1740 [hep-ph]

Outline


- 1 The Gravitino Problem
- 2 Entropy Production
- 3 Candidates for Entropy Producers

1 The Gravitino Problem

2 Entropy Production

3 Candidates for Entropy Producers

History of the Universe

Supersymmetry

- Symmetry between fermions and bosons
- **Superpartner** for each Standard Model particle:
different **spin**, other properties equal

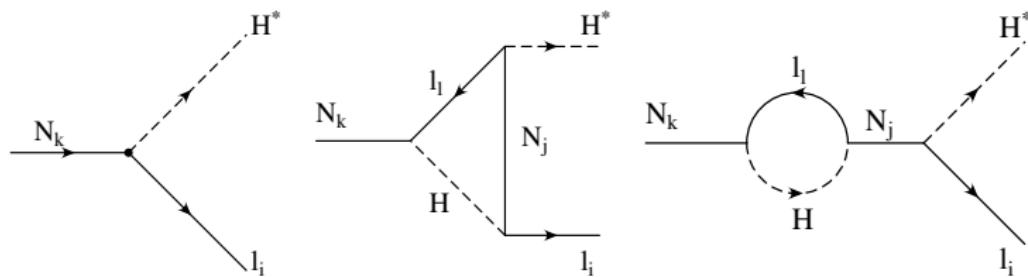
Supersymmetry

- Symmetry between fermions and bosons
- **Superpartner** for each Standard Model particle:
different **spin**, other properties equal

Supersymmetry

- Symmetry between fermions and bosons
- **Superpartner** for each Standard Model particle:
different **spin**, other properties equal

Bino
Neutral Wino
2 Higgsinos
Gravitino (in supergravity)


→ → 4 **neutralinos**

- Lightest superpartner (**LSP**) stable \leadsto **dark matter** candidate

Leptogenesis

- Gauge singlet neutrinos N
- Large Majorana masses $M_R \gtrsim 10^9$ GeV
- Related to **light** neutrino masses: **see-saw mechanism**
- **C, CP violation** in decays

$$|\epsilon| = \frac{\Gamma(N \rightarrow \ell H) - \Gamma(N \rightarrow \bar{\ell} \bar{H})}{\Gamma(N \rightarrow \ell H) + \Gamma(N \rightarrow \bar{\ell} \bar{H})} < \frac{3}{16\pi} \frac{M_R \sqrt{\Delta m_{\text{atm}}^2}}{v^2}$$

\sim lepton asymmetry $\propto |\epsilon|$

Leptogenesis

- Gauge singlet neutrinos N
- Large Majorana masses $M_R \gtrsim 10^9$ GeV
- Related to **light** neutrino masses: **see-saw mechanism**
- **C, CP violation** in decays

$$|\epsilon| = \frac{\Gamma(N \rightarrow \ell H) - \Gamma(N \rightarrow \bar{\ell} \bar{H})}{\Gamma(N \rightarrow \ell H) + \Gamma(N \rightarrow \bar{\ell} \bar{H})} < \frac{3}{16\pi} \frac{M_R \sqrt{\Delta m_{\text{atm}}^2}}{v^2}$$

\leadsto lepton asymmetry $\propto |\epsilon|$

- Sphalerons (non-perturbative processes)
 \leadsto baryon asymmetry $\eta_B = \frac{n_B}{n_\gamma} \propto |\epsilon| < M_R \dots$
- Observed $\eta_B \sim 6 \cdot 10^{-10} \sim M_R \gtrsim 2 \cdot 10^9$ GeV

Leptogenesis

- Gauge singlet neutrinos N
- Large Majorana masses $M_R \gtrsim 10^9$ GeV
- Related to **light** neutrino masses: **see-saw mechanism**
- **C, CP violation** in decays

$$|\epsilon| = \frac{\Gamma(N \rightarrow \ell H) - \Gamma(N \rightarrow \bar{\ell} \bar{H})}{\Gamma(N \rightarrow \ell H) + \Gamma(N \rightarrow \bar{\ell} \bar{H})} < \frac{3}{16\pi} \frac{M_R \sqrt{\Delta m_{\text{atm}}^2}}{v^2}$$

\leadsto lepton asymmetry $\propto |\epsilon|$

- Sphalerons (non-perturbative processes)
 \leadsto baryon asymmetry $\eta_B = \frac{n_B}{n_\gamma} \propto |\epsilon| < M_R \dots$
- Observed $\eta_B \sim 6 \cdot 10^{-10} \leadsto M_R \gtrsim 2 \cdot 10^9$ GeV
- **Thermal** leptogenesis: N produced thermally at $T > M_R$

$$T_R \gtrsim 2 \cdot 10^9 \text{ GeV}$$

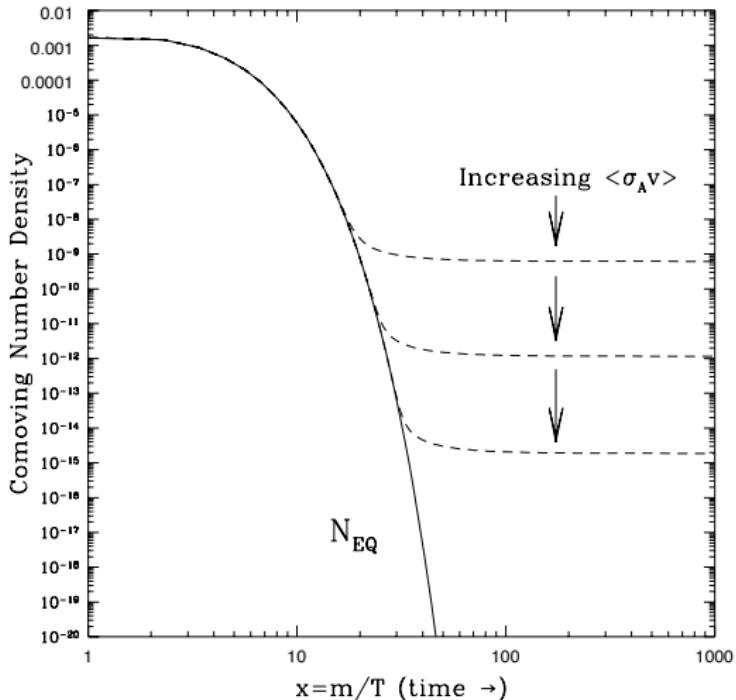
Gravitino Production

- Thermal production at high temperature

$$\Omega_{3/2}^{\text{tp}} h^2 \simeq 0.11 \left(\frac{T_R}{2 \cdot 10^9 \text{ GeV}} \right) \left(\frac{M_{\tilde{g}}}{10^3 \text{ GeV}} \right)^2 \left(\frac{67 \text{ GeV}}{m_{3/2}} \right)$$

Gravitino Production

- Thermal production at high temperature

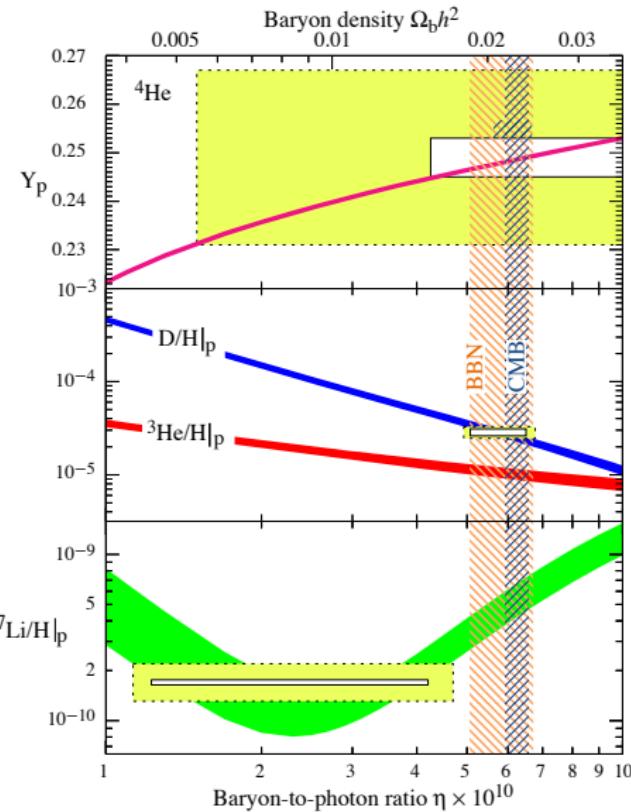

$$\Omega_{3/2}^{\text{tp}} h^2 \simeq 0.11 \left(\frac{T_R}{2 \cdot 10^9 \text{ GeV}} \right) \left(\frac{M_{\tilde{g}}}{10^3 \text{ GeV}} \right)^2 \left(\frac{67 \text{ GeV}}{m_{3/2}} \right)$$

- Observed dark matter abundance: $\Omega_{\text{DM}} h^2 \simeq 0.11$

~**Compatible** with thermal leptogenesis:

- Gravitino **LSP** with mass $\gtrsim 60 \text{ GeV}$
- Heavier non-LSP gravitino

WIMP Freeze-Out

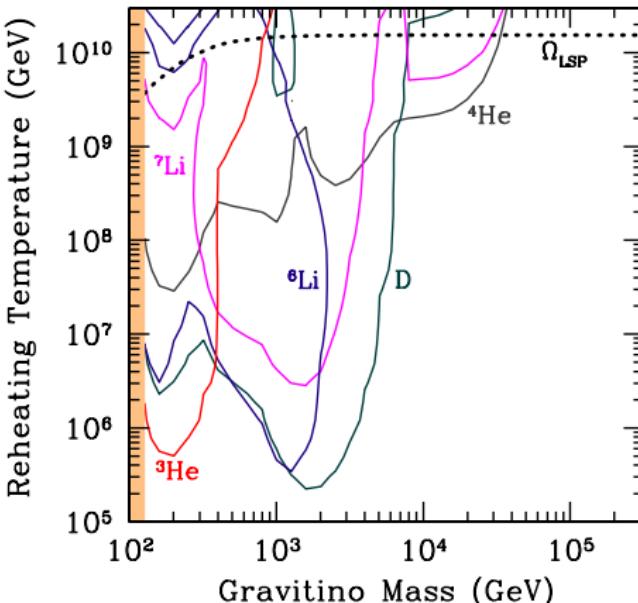

- Weakly interacting stable particle χ
- Thermal equilibrium: $N_\chi \propto e^{-T/m_\chi}$
- Annihilation rate $\Gamma(\chi\bar{\chi} \rightarrow xy) < H$
 - ~ **freeze-out:** $N_\chi = \text{const.}$
 - ~ **relic density** Ω_χ determined
- $T_{\text{fo}} \sim \frac{m_\chi}{25}$

Big Bang Nucleosynthesis

- $T \sim 1$ MeV or $t \sim 1$ s:
freeze-out of $n \leftrightarrow p$
 $\sim n/p$ ratio fixed
- $T \sim 0.1$ MeV: $p + n \rightarrow D$
- Afterwards formation of
 ^3He , ^4He , ^7Li
- Abundances depend on
baryon density (Ω_B or η_B)
- Agree with observations for
standard cosmology

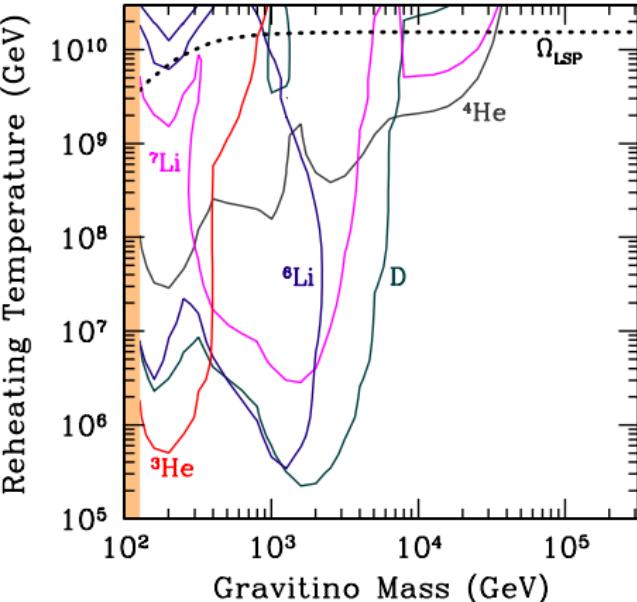
Big Bang Nucleosynthesis

- $T \sim 1 \text{ MeV}$ or $t \sim 1 \text{ s}$:
freeze-out of $n \leftrightarrow p$
 $\sim n/p$ ratio fixed
- $T \sim 0.1 \text{ MeV}$: $p + n \rightarrow D$
- Afterwards formation of ^3He , ^4He , ^7Li
- Abundances depend on baryon density (Ω_B or η_B)
- Agree with observations for standard cosmology



Gravitino Problem

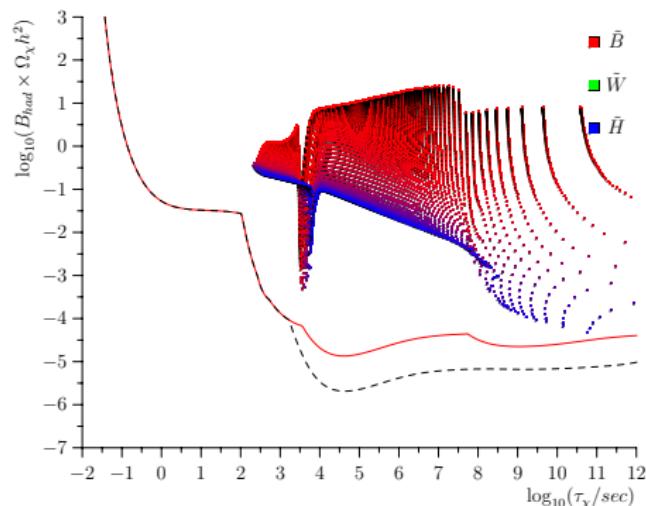
- Gravitino interacts via **gravity**
 - ~ extremely weakly
 - ~ **lifetime** $\sim 10^{-2}$ s ... years
- Energetic decay products destroy nuclei produced in **Big Bang Nucleosynthesis**
- Distortions of the **Cosmic Microwave Background**
(less constraining)


Gravitino Problem

- Gravitino interacts via **gravity**
 - ~ extremely weakly
 - ~ **lifetime** $\sim 10^{-2}$ s ... years
- Energetic decay products destroy nuclei produced in **Big Bang Nucleosynthesis**
- Distortions of the **Cosmic Microwave Background** (less constraining)

Gravitino Problem

- Gravitino interacts via **gravity**
 - ~ extremely weakly
 - ~ **lifetime** $\sim 10^{-2}$ s ... years
- Energetic decay products destroy nuclei produced in **Big Bang Nucleosynthesis**
- Distortions of the **Cosmic Microwave Background** (less constraining)



- ~ $T_R \lesssim 10^7$ GeV or $m_{3/2} \gg 1$ TeV
- ~ **Conflict** with thermal leptogenesis, or unnatural spectrum

Big Bang Nucleosynthesis with Gravitino LSP

- Gravitino LSP: Next-to-LSP (**NLSP**) long-lived
- BBN bounds depend on kind of NLSP
- Assume Ω_{NLSP} to be given by thermal relic density
- **Neutralino** ruled out unless very heavy

$m_{3/2} = 100\text{GeV}$ with: $M_2 = 2200$, $M_3 = 2200$, $\tan\beta = 10$, $\text{sign}(\mu) = 1$.

Big Bang Nucleosynthesis with Gravitino LSP

- Gravitino LSP: Next-to-LSP (**NLSP**) long-lived
- BBN bounds depend on kind of NLSP
- Assume Ω_{NLSP} to be given by thermal relic density
- **Neutralino** ruled out unless very heavy
- **Stau** decays can be ok, but **bound states** with nuclei change BBN reaction rates \sim overproduction of ${}^6\text{Li}$
- **Sneutrino** mostly harmless

~ Gravitino problem remains as **NLSP decay problem**

Solutions

- Abandon SUSY
- Abandon thermal leptogenesis
- Fine-tune to exploit loopholes
- Very heavy gravitino
- Gravitino LSP + harmless NLSP
 - New interactions \leadsto faster decay
 - Very light gravitino \leadsto faster decay, $\Omega_{3/2} \not\propto T_R$
 - Harmless decay products
 - Abundance smaller than thermal relic abundance
- Arbitrary combinations

Solutions

- Abandon SUSY (**heresy**)
- Abandon thermal leptogenesis
- Fine-tune to exploit loopholes
- Very heavy gravitino
- Gravitino LSP + harmless NLSP
 - New interactions \leadsto faster decay
 - Very light gravitino \leadsto faster decay, $\Omega_{3/2} \not\propto T_R$
 - Harmless decay products
 - Abundance smaller than thermal relic abundance
- Arbitrary combinations

Solutions

- Abandon SUSY (**heresy**)
- Abandon thermal leptogenesis
- Fine-tune to exploit loopholes
- Very heavy gravitino
- Gravitino LSP + harmless NLSP
 - New interactions \leadsto faster decay
 - Very light gravitino \leadsto faster decay, $\Omega_{3/2} \not\propto T_R$
 - Harmless decay products
 - **Abundance smaller than thermal relic abundance**
- Arbitrary combinations

- 1 The Gravitino Problem
- 2 Entropy Production
- 3 Candidates for Entropy Producers

NLSP Dilution by Entropy Production

- BBN bounds depend on $\Omega_{\text{NLSP}} \propto \frac{N}{S}$
 S = comoving **entropy** density
- Increase of entropy after freeze-out: $S \rightarrow S\Delta$
 - ~ **dilution** of NLSP density: $\Omega_{\text{NLSP}} \rightarrow \frac{\Omega_{\text{NLSP}}}{\Delta}$
 - ~ reduction of impact on BBN

NLSP Dilution by Entropy Production

- BBN bounds depend on $\Omega_{\text{NLSP}} \propto \frac{N}{S}$
 S = comoving **entropy** density
- Increase of entropy after freeze-out: $S \rightarrow S\Delta$
 - ~ **dilution** of NLSP density: $\Omega_{\text{NLSP}} \rightarrow \frac{\Omega_{\text{NLSP}}}{\Delta}$
 - ~ reduction of impact on BBN
- Entropy from decay of non-relativistic particle ϕ

$$\frac{\rho_\phi}{\rho_{\text{rad}}} \propto \frac{R^{-3}}{R^{-4}} = R$$

- ~ ϕ **dominates** energy density at some time t_- , temperature T_-
- Candidates: later

Constraints

- Radiation domination at NLSP freeze-out:

$$T_{\text{=}} < T_{\text{fo}} \sim \frac{m_{\text{NLSP}}}{25}$$

~ standard calculation of Ω_{NLSP} applies (ϕ can be ignored)

Constraints

- Radiation domination at NLSP freeze-out:

$$T_{\text{=}} < T_{\text{fo}} \sim \frac{m_{\text{NLSP}}}{25}$$

~ standard calculation of Ω_{NLSP} applies (ϕ can be ignored)

- Decay before BBN:

$$T_{\text{dec}} = T(\tau_{\phi}) \gtrsim (0.7 \dots 4) \text{ MeV}$$

Constraints

- Radiation domination at NLSP freeze-out:

$$T_{\text{=}} < T_{\text{fo}} \sim \frac{m_{\text{NLSP}}}{25}$$

~ standard calculation of Ω_{NLSP} applies (ϕ can be ignored)

- Decay before BBN:

$$T_{\text{dec}} = T(\tau_{\phi}) \gtrsim (0.7 \dots 4) \text{ MeV}$$

~ Maximal dilution factor:

$$\Delta \simeq 0.75 \frac{T_{\text{=}}}{T_{\text{dec}}} \lesssim 750 \left(\frac{m_{\text{NLSP}}}{100 \text{ GeV}} \right) \sim 10^3$$

Other Effects of Entropy

- 😊 $\Omega_{\text{NLSP}} \rightarrow \frac{\Omega_{\text{NLSP}}}{\Delta}$
- 😊 Gravitino density: $\Omega_{3/2} \rightarrow \frac{\Omega_{3/2}}{\Delta}$
- 😢 Baryon asymmetry: $\eta_B \rightarrow \frac{\eta_B}{\Delta}$

Other Effects of Entropy

- 😊 $\Omega_{\text{NLSP}} \rightarrow \frac{\Omega_{\text{NLSP}}}{\Delta}$
- 😊 Gravitino density: $\Omega_{3/2} \rightarrow \frac{\Omega_{3/2}}{\Delta}$
- 😢 Baryon asymmetry: $\eta_B \rightarrow \frac{\eta_B}{\Delta}$

Remember $\eta_B \propto M_R$ and $T_R \gtrsim M_R$

- ~ To keep observed η_B :
 $M_R \rightarrow M_R \Delta$ and $T_R \rightarrow T_R \Delta$
- ~ $\Omega_{3/2} \propto T_R$ **unchanged**

Other Effects of Entropy

☺ $\Omega_{\text{NLSP}} \rightarrow \frac{\Omega_{\text{NLSP}}}{\Delta}$

☺ Gravitino density: $\Omega_{3/2} \rightarrow \frac{\Omega_{3/2}}{\Delta}$

☹ Baryon asymmetry: $\eta_B \rightarrow \frac{\eta_B}{\Delta}$

Remember $\eta_B \propto M_R$ and $T_R \gtrsim M_R$

~ To keep observed η_B :

$$M_R \rightarrow M_R \Delta \text{ and } T_R \rightarrow T_R \Delta$$

~ $\Omega_{3/2} \propto T_R$ **unchanged**

Without Δ	With Δ
η_B	η_B
T_R	$T_R \Delta$
$\Omega_{3/2}$	$\Omega_{3/2}$
Ω_{NLSP}	$\frac{\Omega_{\text{NLSP}}}{\Delta}$

Other Effects of Entropy

☺ $\Omega_{\text{NLSP}} \rightarrow \frac{\Omega_{\text{NLSP}}}{\Delta}$

☺ Gravitino density: $\Omega_{3/2} \rightarrow \frac{\Omega_{3/2}}{\Delta}$

☹ Baryon asymmetry: $\eta_B \rightarrow \frac{\eta_B}{\Delta}$

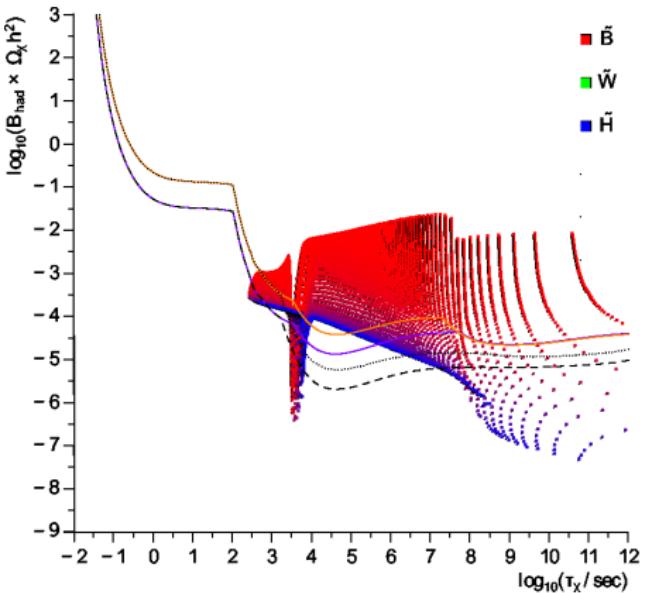
Remember $\eta_B \propto M_R$ and $T_R \gtrsim M_R$

~ To keep observed η_B :

$$M_R \rightarrow M_R \Delta \text{ and } T_R \rightarrow T_R \Delta$$

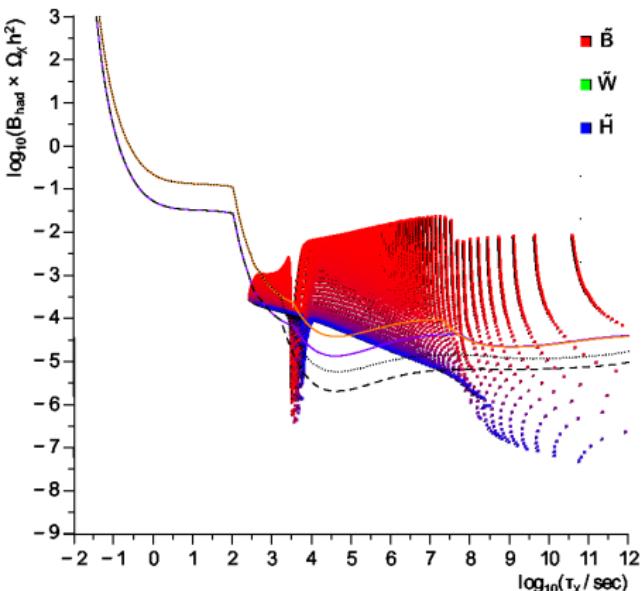
~ $\Omega_{3/2} \propto T_R$ **unchanged**

Strong **washout** of η_B for $M_R \gtrsim 10^{13}$ GeV ~ slower increase


~ observed η_B can only be reached for $\Delta \lesssim 10^3 \dots 10^4$

Without Δ	With Δ
η_B	η_B
T_R	$T_R \Delta$
$\Omega_{3/2}$	$\Omega_{3/2}$
Ω_{NLSP}	$\frac{\Omega_{\text{NLSP}}}{\Delta}$

Neutralino NLSP with Entropy Production


$m_{3/2} = 100\text{GeV}$ with: $M_2 = 2200$, $M_3 = 2200$, $\tan\beta = 10$, $\text{sign}(\mu) = 1$.

- Gravitino LSP,
 $m_{3/2} = 100\text{ GeV}$
- Neutralino NLSP,
 $100\text{ GeV} < m_{\text{NLSP}} < 2\text{ TeV}$
- $\Delta = 10^3$

Neutralino NLSP with Entropy Production

$m_{3/2} = 100\text{GeV}$ with: $M_2 = 2200$, $M_3 = 2200$, $\tan\beta = 10$, $\text{sign}(\mu) = 1$.

- Gravitino LSP, $m_{3/2} = 100\text{ GeV}$
- Neutralino NLSP, $100\text{ GeV} < m_{\text{NLSP}} < 2\text{ TeV}$
- $\Delta = 10^3$

- Light neutralinos allowed for significant higgsino or wino content
- Pure binos remain excluded

~ Thermal leptogenesis possible

- 1 The Gravitino Problem
- 2 Entropy Production
- 3 Candidates for Entropy Producers

General Requirements

- ① $T_{\text{dec}} < T_{\text{fo}}$ \rightsquigarrow dilute Ω_{NLSP}

General Requirements

- ① $T_{\text{dec}} < T_{\text{fo}}$ \rightsquigarrow dilute Ω_{NLSP}
- ② $T_{\text{dec}} \gtrsim 4 \text{ MeV}$ \rightsquigarrow BBN ok

General Requirements

- ① $T_{\text{dec}} < T_{\text{fo}}$ \rightsquigarrow dilute Ω_{NLSP}
- ② $T_{\text{dec}} \gtrsim 4 \text{ MeV}$ \rightsquigarrow BBN ok
- ③ $\frac{\rho_\phi}{\rho_{\text{rad}}}(T_{\text{dec}}) > 1$ $\rightsquigarrow \Delta \gg 1$

General Requirements

- 1 $T_{\text{dec}} < T_{\text{fo}}$ \rightsquigarrow dilute Ω_{NLSP}
- 2 $T_{\text{dec}} \gtrsim 4 \text{ MeV}$ \rightsquigarrow BBN ok
- 3 $\frac{\rho_\phi}{\rho_{\text{rad}}}(T_{\text{dec}}) > 1$ $\rightsquigarrow \Delta \gg 1$
- 4 $\frac{\rho_\phi}{\rho_{\text{rad}}}(T_{\text{fo}}) < 1$ \rightsquigarrow standard NLSP freeze-out

General Requirements

- ① $T_{\text{dec}} < T_{\text{fo}}$ \rightsquigarrow dilute Ω_{NLSP}
- ② $T_{\text{dec}} \gtrsim 4 \text{ MeV}$ \rightsquigarrow BBN ok
- ③ $\frac{\rho_\phi}{\rho_{\text{rad}}}(T_{\text{dec}}) > 1$ $\rightsquigarrow \Delta \gg 1$
- ④ $\frac{\rho_\phi}{\rho_{\text{rad}}}(T_{\text{fo}}) < 1$ \rightsquigarrow standard NLSP freeze-out
- ⑤ $\text{Br}(\phi \rightarrow \text{NLSP}) \simeq 0$ \rightsquigarrow solution of NLSP decay problem

General Requirements

- ① $T_{\text{dec}} < T_{\text{fo}}$ \leadsto dilute Ω_{NLSP}
- ② $T_{\text{dec}} \gtrsim 4 \text{ MeV}$ \leadsto BBN ok
- ③ $\frac{\rho_\phi}{\rho_{\text{rad}}}(T_{\text{dec}}) > 1$ $\leadsto \Delta \gg 1$
- ④ $\frac{\rho_\phi}{\rho_{\text{rad}}}(T_{\text{fo}}) < 1$ \leadsto standard NLSP freeze-out
- ⑤ $\text{Br}(\phi \rightarrow \text{NLSP}) \simeq 0$ \leadsto solution of NLSP decay problem
- ⑥ $\text{Br}(\phi \rightarrow \text{Gravitino}) \simeq 0$ \leadsto correct $\Omega_{3/2}^{\text{tp}} = \Omega_{\text{DM}}$

General Requirements

- ① $T_{\text{dec}} < T_{\text{fo}}$ \leadsto dilute Ω_{NLSP}
- ② $T_{\text{dec}} \gtrsim 4 \text{ MeV}$ \leadsto BBN ok
- ③ $\frac{\rho_\phi}{\rho_{\text{rad}}}(T_{\text{dec}}) > 1$ $\leadsto \Delta \gg 1$
- ④ $\frac{\rho_\phi}{\rho_{\text{rad}}}(T_{\text{fo}}) < 1$ \leadsto standard NLSP freeze-out
- ⑤ $\text{Br}(\phi \rightarrow \text{NLSP}) \simeq 0$ \leadsto solution of NLSP decay problem
- ⑥ $\text{Br}(\phi \rightarrow \text{Gravitino}) \simeq 0$ \leadsto correct $\Omega_{3/2}^{\text{tp}} = \Omega_{\text{DM}}$
- ⑦ Compatibility with gravitino DM (e.g., gravitino remains stable)

General Requirements

- ① $T_{\text{dec}} < T_{\text{fo}}$ \leadsto dilute Ω_{NLSP}
- ② $T_{\text{dec}} \gtrsim 4 \text{ MeV}$ \leadsto BBN ok
- ③ $\frac{\rho_\phi}{\rho_{\text{rad}}}(T_{\text{dec}}) > 1$ $\leadsto \Delta \gg 1$
- ④ $\frac{\rho_\phi}{\rho_{\text{rad}}}(T_{\text{fo}}) < 1$ \leadsto standard NLSP freeze-out
- ⑤ $\text{Br}(\phi \rightarrow \text{NLSP}) \simeq 0$ \leadsto solution of NLSP decay problem
- ⑥ $\text{Br}(\phi \rightarrow \text{Gravitino}) \simeq 0$ \leadsto correct $\Omega_{3/2}^{\text{tp}} = \Omega_{\text{DM}}$
- ⑦ Compatibility with gravitino DM (e.g., gravitino remains stable)
- ⑧ Well-behaved superpartners

General Requirements

- ① $T_{\text{dec}} < T_{\text{fo}}$ \leadsto dilute Ω_{NLSP}
- ② $T_{\text{dec}} \gtrsim 4 \text{ MeV}$ \leadsto BBN ok
- ③ $\frac{\rho_\phi}{\rho_{\text{rad}}}(T_{\text{dec}}) > 1$ $\leadsto \Delta \gg 1$
- ④ $\frac{\rho_\phi}{\rho_{\text{rad}}}(T_{\text{fo}}) < 1$ \leadsto standard NLSP freeze-out
- ⑤ $\text{Br}(\phi \rightarrow \text{NLSP}) \simeq 0$ \leadsto solution of NLSP decay problem
- ⑥ $\text{Br}(\phi \rightarrow \text{Gravitino}) \simeq 0$ \leadsto correct $\Omega_{3/2}^{\text{tp}} = \Omega_{\text{DM}}$
- ⑦ Compatibility with gravitino DM (e.g., gravitino remains stable)
- ⑧ Well-behaved superpartners

Generic or necessary for long-lived particles even without demanding entropy production

Entropy from Saxion Decays

- Strong CP problem \leadsto Peccei-Quinn mechanism \leadsto **axion**
- SUSY: axion **supermultiplet** (axion, **saxion** ϕ , axino)
- Interactions suppressed by characteristic scale $f_a \gtrsim 10^9$ GeV

Entropy from Saxion Decays

- Strong CP problem \leadsto Peccei-Quinn mechanism \leadsto **axion**
- SUSY: axion **supermultiplet** (axion, **saxion** ϕ , axino)
- Interactions suppressed by characteristic scale $f_a \gtrsim 10^9$ GeV
- Saxion produced in **thermal equilibrium** for

$$T_R \gtrsim 10^{12} \text{ GeV} \left(\frac{f_a}{10^{12} \text{ GeV}} \right)^2$$

- Correct $\Omega_{3/2}^{\text{tp}} \leadsto$ need $\Delta \sim 10^3$ for $f_a = 10^{12}$ GeV

Entropy from Saxion Decays

- Strong CP problem \leadsto Peccei-Quinn mechanism \leadsto **axion**
- SUSY: axion **supermultiplet** (axion, **saxion** ϕ , axino)
- Interactions suppressed by characteristic scale $f_a \gtrsim 10^9$ GeV
- Saxion produced in **thermal equilibrium** for

$$T_R \gtrsim 10^{12} \text{ GeV} \left(\frac{f_a}{10^{12} \text{ GeV}} \right)^2$$

- Correct $\Omega_{3/2}^{\text{tp}} \leadsto$ need $\Delta \sim 10^3$ for $f_a = 10^{12}$ GeV
- Dominant decay $\phi \rightarrow gg \leadsto$ dilution factor:

$$\Delta \gtrsim 55 \left(\frac{f_a}{10^{12} \text{ GeV}} \right)^{\frac{2}{3}} \ll 10^3 \text{ ☹}$$

Entropy from Saxion Decays

- Strong CP problem \leadsto Peccei-Quinn mechanism \leadsto **axion**
- SUSY: axion **supermultiplet** (axion, **saxion** ϕ , axino)
- Interactions suppressed by characteristic scale $f_a \gtrsim 10^9$ GeV
- Saxion produced in **thermal equilibrium** for

$$T_R \gtrsim 10^{12} \text{ GeV} \left(\frac{f_a}{10^{12} \text{ GeV}} \right)^2$$

- Correct $\Omega_{3/2}^{\text{tp}} \sim$ need $\Delta \sim 10^3$ for $f_a = 10^{12}$ GeV
- Dominant decay $\phi \rightarrow gg \sim$ dilution factor:

$$\Delta \gtrsim 55 \left(\frac{f_a}{10^{12} \text{ GeV}} \right)^{\frac{2}{3}} \ll 10^3 \text{ ☹}$$

- **Failure** due to conflicting requirements:
 - Sufficient production \leadsto strong coupling (small f_a)
 - Late decay \leadsto weak coupling (large f_a)
- Generic if **same coupling** responsible for **production** and **decay**

Entropy from Saxion Decays

- Strong CP problem \leadsto Peccei-Quinn mechanism \leadsto **axion**
- SUSY: axion **supermultiplet** (axion, **saxion** ϕ , axino)
- Interactions suppressed by characteristic scale $f_a \gtrsim 10^9$ GeV
- Saxion produced in **thermal equilibrium** for

$$T_R \gtrsim 10^{12} \text{ GeV} \left(\frac{f_a}{10^{12} \text{ GeV}} \right)^2$$

- Correct $\Omega_{3/2}^{\text{tp}} \sim$ need $\Delta \sim 10^3$ for $f_a = 10^{12}$ GeV
- Dominant decay $\phi \rightarrow gg \sim$ dilution factor:

$$\Delta \gtrsim 55 \left(\frac{f_a}{10^{12} \text{ GeV}} \right)^{\frac{2}{3}} \ll 10^3 \text{ ☹}$$

- **Failure** due to conflicting requirements:
 - Sufficient production \leadsto strong coupling (small f_a)
 - Late decay \leadsto weak coupling (large f_a)
- Generic if **same coupling** responsible for **production** and **decay**
- Further problem with **axino**

Non-Thermally Produced Saxion

- Saxion field displaced from potential minimum during inflation
- Oscillations around minimum \sim non-relativistic particles
- Production and decay decoupled \sim **consistent** scenario

Non-Thermally Produced Saxion

- Saxion field displaced from potential minimum during inflation
- Oscillations around minimum \sim non-relativistic particles
- Production and decay decoupled \sim **consistent** scenario
- Example with maximal dilution factor:

$$\Delta \sim 10^3$$

$$\text{Saxion mass} \sim 10 \text{ GeV}$$

$$\text{Axino mass} \sim 1 \text{ TeV}$$

$$f_a \sim 10^{10} \text{ GeV}$$

$$\text{Initial amplitude} \sim 10^4 f_a$$

$$m_{\text{NLSP}} \simeq 200 \text{ GeV}$$

$$m_{3/2} \simeq 100 \text{ GeV}$$

Conclusions

- Gravitino problem in SUSY scenarios with thermal leptogenesis
- Solution: gravitino LSP, dilution of NLSP by entropy
- Neutralino NLSP with large higgsino or wino component ok
- Constraints on entropy-producing particle
- Thermally produced particles fail
- Saxon produced in oscillations works