

Effective Action in arbitrary background fields

Adolfo Huet
IFM-UMSNH

February 9, 2010

Outline

General aspects, computation

The method

New results

The effective action in QED

The classical Maxwell Lagrangian is :

$$\mathcal{L}_{\text{Maxwell}} = \frac{1}{2}(\vec{E}^2 - \vec{B}^2)$$

The effective action in QED

The classical Maxwell Lagrangian is :

$$\mathcal{L}_{\text{Maxwell}} = \frac{1}{2}(\vec{E}^2 - \vec{B}^2)$$

But the vacuum is never empty! Virtual (e^+ , e^-) pairs turn the vacuum effectively into a medium.

The effective action in QED

The classical Maxwell Lagrangian is :

$$\mathcal{L}_{\text{Maxwell}} = \frac{1}{2}(\vec{E}^2 - \vec{B}^2)$$

But the vacuum is never empty! Virtual (e^+ , e^-) pairs turn the vacuum effectively into a medium.

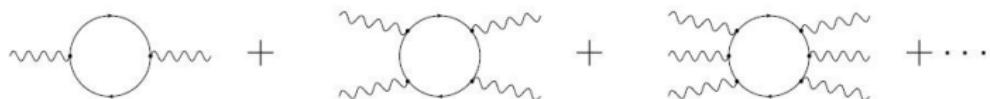
$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{Maxwell}} + \frac{2(\hbar/mc)^3}{45mc^2} \left(\frac{e^2}{4\pi\hbar c} \right)^2 [(\vec{E}^2 - \vec{B}^2)^2 + 7(\vec{E} \cdot \vec{B})^2] + \dots$$

Quantum fluctuations in the vacuum introduce *non-linear* corrections to the Lagrangian.

Physical consequences

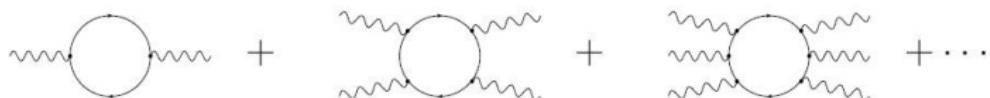
Physical consequences

- ▶ Light-light scattering

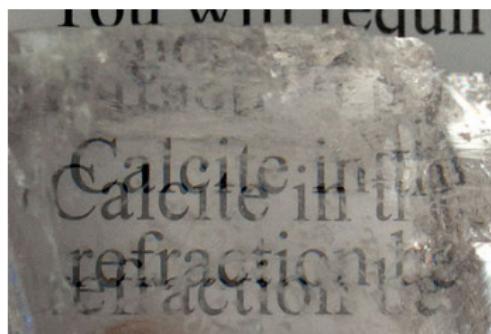


Physical consequences

- ▶ Light-light scattering

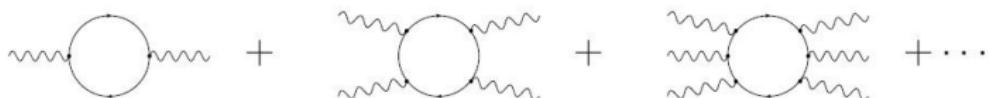


- ▶ Vacuum-birefringence

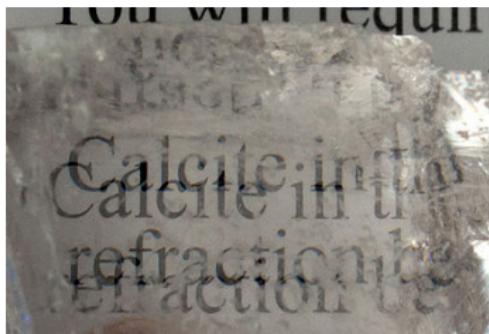


Physical consequences

- ▶ Light-light scattering



- ▶ Vacuum-birefringence



These effects are encoded in the Effective Action.

Effective Action and Determinants

The generating functional for QED is

$$Z = \int \mathcal{D}A \int \mathcal{D}\bar{\psi} \mathcal{D}\psi e^{-i \int F_{\mu\nu}^2} e^{-i \int \bar{\psi}(iD - m)\psi}$$

Effective Action and Determinants

The generating functional for QED is

$$\begin{aligned} Z &= \int \mathcal{D}A \int \mathcal{D}\bar{\psi} \mathcal{D}\psi e^{-i \int F_{\mu\nu}^2} e^{-i \int \bar{\psi}(iD - m)\psi} \\ &= \int \mathcal{D}A \det(iD - m) e^{-i \int F_{\mu\nu}^2} \end{aligned}$$

Effective Action and Determinants

The generating functional for QED is

$$\begin{aligned} Z &= \int \mathcal{D}A \int \mathcal{D}\bar{\psi} \mathcal{D}\psi e^{-i \int F_{\mu\nu}^2} e^{-i \int \bar{\psi}(iD - m)\psi} \\ &= \int \mathcal{D}A \det(iD - m) e^{-i \int F_{\mu\nu}^2} \\ &= \int \mathcal{D}A e^{-i \int F_{\mu\nu}^2 + \ln \det(iD - m)} \end{aligned}$$

Effective Action and Determinants

The generating functional for QED is

$$\begin{aligned} Z &= \int \mathcal{D}A \int \mathcal{D}\bar{\psi} \mathcal{D}\psi e^{-i \int F_{\mu\nu}^2} e^{-i \int \bar{\psi}(iD - m)\psi} \\ &= \int \mathcal{D}A \det(iD - m) e^{-i \int F_{\mu\nu}^2} \\ &= \int \mathcal{D}A e^{-i \int F_{\mu\nu}^2 + \ln \det(iD - m)} \end{aligned}$$

- ▶ Spinor Effective Action :

$$\Gamma = -i \ln \det(iD - m),$$

- ▶ Scalar Effective Action :

$$\Gamma = \frac{i}{2} \ln \det(D_\mu^2 + m^2),$$

where $D \equiv \gamma^\mu D_\mu = \gamma^\mu (\partial_\mu - ieA_\mu(x))$.

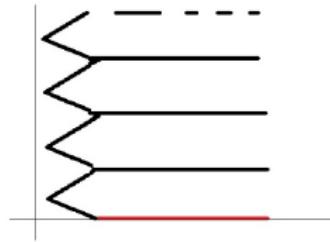
Soluble cases?

Historically, the first case solved was for a $F_{\mu\nu} = \text{const.}$ background. For example, for a purely magnetic B-field :

Soluble cases?

Historically, the first case solved was for a $F_{\mu\nu} = \text{const.}$ background. For example, for a purely magnetic B-field :

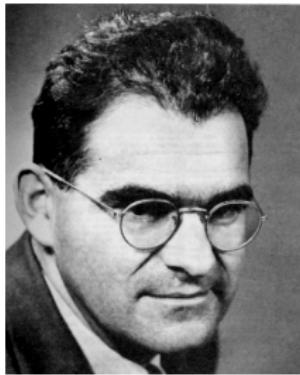
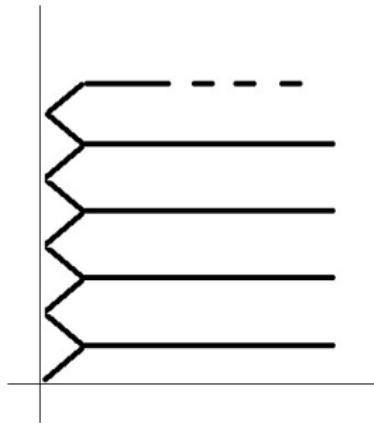
- ▶ Euler-Heisenberg (Spinor QED, 1936)



- ▶ The corresponding Landau levels are $E_n = (2n + 1)B \mp B$.

Soluble cases?

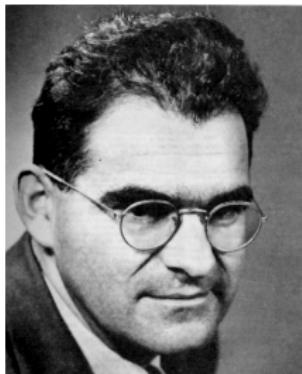
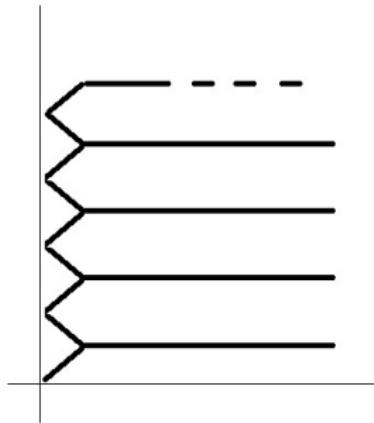
- ▶ Weisskopf (Scalar QED, 1936)



- ▶ The corresponding Landau levels are $E_n = (2n + 1)B$.

Soluble cases?

- ▶ Weisskopf (Scalar QED, 1936)



- ▶ The corresponding Landau levels are $E_n = (2n + 1)B$.
- ▶ Note that zero-modes are possible in the Spinor case but not in the Scalar case.

How to compute the Effective Action for a more general background $F_{\mu\nu}(x)$?

How to compute the Effective Action for a more general background $F_{\mu\nu}(x)$?

For a more general $F_{\mu\nu}$, the $m \rightarrow \infty$ limit can be systematically studied by means of the *heat-kernel* expansion :

$$\ln \det(-\not{D}^2 + m^2) = \text{Tr} \ln(-\not{D}^2 + m^2) \sim - \int_0^\infty \frac{ds}{s} e^{-m^2 s} \text{Tr} e^{-s(-\not{D}^2)}$$

How to compute the Effective Action for a more general background $F_{\mu\nu}(x)$?

For a more general $F_{\mu\nu}$, the $m \rightarrow \infty$ limit can be systematically studied by means of the *heat-kernel* expansion :

$$\ln \det(-\not{D}^2 + m^2) = \text{Tr} \ln(-\not{D}^2 + m^2) \sim - \int_0^\infty \frac{ds}{s} e^{-m^2 s} \text{Tr} e^{-s(-\not{D}^2)}$$

$$s \rightarrow 0 \quad : \quad \text{Tr} e^{-s(-\not{D}^2)} \sim \frac{1}{(4\pi s)^2} \sum_{n=0}^{\infty} s^n a_n[F]$$

How to compute the Effective Action for a more general background $F_{\mu\nu}(x)$?

For a more general $F_{\mu\nu}$, the $m \rightarrow \infty$ limit can be systematically studied by means of the *heat-kernel* expansion :

$$\ln \det(-\not{D}^2 + m^2) = \text{Tr} \ln(-\not{D}^2 + m^2) \sim - \int_0^\infty \frac{ds}{s} e^{-m^2 s} \text{Tr} e^{-s(-\not{D}^2)}$$

$$s \rightarrow 0 \quad : \quad \text{Tr} e^{-s(-\not{D}^2)} \sim \frac{1}{(4\pi s)^2} \sum_{n=0}^{\infty} s^n a_n[F]$$

$$\implies \Gamma = K \ln m + \sum_{n=0}^{\infty} \frac{C_n[F]}{(m^2)^n}$$

How to compute the Effective Action for a more general background $F_{\mu\nu}(x)$?

For a more general $F_{\mu\nu}$, the $m \rightarrow \infty$ limit can be systematically studied by means of the *heat-kernel* expansion :

$$\ln \det(-\not{D}^2 + m^2) = \text{Tr} \ln(-\not{D}^2 + m^2) \sim - \int_0^\infty \frac{ds}{s} e^{-m^2 s} \text{Tr} e^{-s(-\not{D}^2)}$$

$$s \rightarrow 0 \quad : \quad \text{Tr} e^{-s(-\not{D}^2)} \sim \frac{1}{(4\pi s)^2} \sum_{n=0}^{\infty} s^n a_n[F]$$

$$\implies \Gamma = K \ln m + \sum_{n=0}^{\infty} \frac{C_n[F]}{(m^2)^n}$$

However, for $m \rightarrow 0$, there is no general approach.

The Derivative Expansion

We may expand about the soluble constant field cases

$$S_{\text{eff}} \approx S_0[F] + S_2[F, (\partial F)^2] + S_4[F, (\partial F)^2, (\partial F)^4] + \dots$$

The Derivative Expansion

We may expand about the soluble constant field cases

$$S_{\text{eff}} \approx S_0[F] + S_2[F, (\partial F)^2] + S_4[F, (\partial F)^2, (\partial F)^4] + \dots$$

$$\begin{aligned} \mathcal{L}_{\text{spinor}}(a, b) &= -\frac{1}{8\pi^2} \int_0^\infty \frac{ds}{s^3} e^{-m^2 s} \left\{ (ab)s^2 \coth(as)\coth(bs) \right. \\ &\quad \left. - 1 - \frac{s^2}{3}(a^2 + b^2) \right\} \end{aligned}$$

where $a^2 + b^2 = \frac{1}{2}F_{\mu\nu}F^{\mu\nu}$ and $ab = \frac{1}{4}F_{\mu\nu}\tilde{F}^{\mu\nu}$.

The Derivative Expansion

We may expand about the soluble constant field cases

$$S_{\text{eff}} \approx S_0[F] + S_2[F, (\partial F)^2] + S_4[F, (\partial F)^2, (\partial F)^4] + \dots$$

$$\begin{aligned} \mathcal{L}_{\text{spinor}}(a, b) &= -\frac{1}{8\pi^2} \int_0^\infty \frac{ds}{s^3} e^{-m^2 s} \left\{ (ab)s^2 \coth(as)\coth(bs) \right. \\ &\quad \left. - 1 - \frac{s^2}{3}(a^2 + b^2) \right\} \end{aligned}$$

where $a^2 + b^2 = \frac{1}{2}F_{\mu\nu}F^{\mu\nu}$ and $ab = \frac{1}{4}F_{\mu\nu}\tilde{F}^{\mu\nu}$.

- ▶ Derivative Expansion at 0th order :

$$a \rightarrow a(x) \quad b \rightarrow b(x)$$

The Derivative Expansion

We may expand about the soluble constant field cases

$$S_{\text{eff}} \approx S_0[F] + S_2[F, (\partial F)^2] + S_4[F, (\partial F)^2, (\partial F)^4] + \dots$$

$$\begin{aligned} \mathcal{L}_{\text{spinor}}(a, b) &= -\frac{1}{8\pi^2} \int_0^\infty \frac{ds}{s^3} e^{-m^2 s} \left\{ (ab)s^2 \coth(as)\coth(bs) \right. \\ &\quad \left. - 1 - \frac{s^2}{3}(a^2 + b^2) \right\} \end{aligned}$$

where $a^2 + b^2 = \frac{1}{2}F_{\mu\nu}F^{\mu\nu}$ and $ab = \frac{1}{4}F_{\mu\nu}\tilde{F}^{\mu\nu}$.

- ▶ Derivative Expansion at 0th order :

$$a \rightarrow a(x) \quad b \rightarrow b(x)$$

- ▶ In fact, the DE has been shown to be very accurate in Scalar theories.

The Derivative Expansion

We may expand about the soluble constant field cases

$$S_{\text{eff}} \approx S_0[F] + S_2[F, (\partial F)^2] + S_4[F, (\partial F)^2, (\partial F)^4] + \dots$$

$$\begin{aligned} \mathcal{L}_{\text{spinor}}(a, b) &= -\frac{1}{8\pi^2} \int_0^\infty \frac{ds}{s^3} e^{-m^2 s} \left\{ (ab)s^2 \coth(as)\coth(bs) \right. \\ &\quad \left. - 1 - \frac{s^2}{3}(a^2 + b^2) \right\} \end{aligned}$$

where $a^2 + b^2 = \frac{1}{2}F_{\mu\nu}F^{\mu\nu}$ and $ab = \frac{1}{4}F_{\mu\nu}\tilde{F}^{\mu\nu}$.

- ▶ Derivative Expansion at 0th order :

$$a \rightarrow a(x) \quad b \rightarrow b(x)$$

- ▶ In fact, the DE has been shown to be very accurate in Scalar theories. What happens in Spinor theories?

Summary

Summary

- ▶ The Effective Action is hard to calculate for a general $F_{\mu\nu}(x)$ background.

Summary

- ▶ The Effective Action is hard to calculate for a general $F_{\mu\nu}(x)$ background.
- ▶ The Spinor case is generally more difficult than the Scalar case.

Summary

- ▶ The Effective Action is hard to calculate for a general $F_{\mu\nu}(x)$ background.
- ▶ The Spinor case is generally more difficult than the Scalar case.
- ▶ The physically relevant small-mass limit is difficult to calculate, even as an approximation.

Summary

- ▶ The Effective Action is hard to calculate for a general $F_{\mu\nu}(x)$ background.
- ▶ The Spinor case is generally more difficult than the Scalar case.
- ▶ The physically relevant small-mass limit is difficult to calculate, even as an approximation.

In this talk I present a recent method for calculating the Effective Action that improves these three aspects.

Outline

General aspects, computation

The method

New results

The Gel'Fand-Yaglom theorem

A typical way to calculate a determinant

$$\left[-\frac{d^2}{dx^2} + V(x) \right] \psi(x) = \lambda \psi(x) \quad ; \quad \psi(0) = \psi(L) = 0$$

Do we need to compute the eigenvalues $\{\lambda_1, \lambda_2, \dots\}$?

The Gel'Fand-Yaglom theorem

A typical way to calculate a determinant

$$\left[-\frac{d^2}{dx^2} + V(x) \right] \psi(x) = \lambda \psi(x) \quad ; \quad \psi(0) = \psi(L) = 0$$

Do we need to compute the eigenvalues $\{\lambda_1, \lambda_2, \dots\}$?

Gel'fand-Yaglom : Instead we solve the *initial value* problem.

$$\left[-\frac{d^2}{dx^2} + V(x) \right] \phi(x) = 0 \quad ; \quad \phi(0) = 0 \quad ; \quad \phi'(0) = 1$$

The Gel'Fand-Yaglom theorem

A typical way to calculate a determinant

$$\left[-\frac{d^2}{dx^2} + V(x) \right] \psi(x) = \lambda \psi(x) \quad ; \quad \psi(0) = \psi(L) = 0$$

Do we need to compute the eigenvalues $\{\lambda_1, \lambda_2, \dots\}$?

Gel'fand-Yaglom : Instead we solve the *initial value* problem.

$$\left[-\frac{d^2}{dx^2} + V(x) \right] \phi(x) = 0 \quad ; \quad \phi(0) = 0 \quad ; \quad \phi'(0) = 1$$

$$\Rightarrow \det \left[-\frac{d^2}{dx^2} + V(x) \right] = \phi(L).$$

Example: The Helmholtz operator

$$\hat{H} = \left[-\frac{d^2}{dx^2} + m^2 \right] \quad ; \quad \lambda_n = m^2 + \left(\frac{n\pi}{L} \right)^2,$$
$$\frac{\det \left[-\frac{d^2}{dx^2} + m^2 \right]}{\det \left[-\frac{d^2}{dx^2} \right]} = \prod_{n=1}^{\infty} \frac{\left[m^2 + \left(\frac{n\pi}{L} \right)^2 \right]}{\left[\left(\frac{n\pi}{L} \right)^2 \right]} = \frac{\sinh(mL)}{mL}$$

Example: The Helmholtz operator

$$\hat{H} = \left[-\frac{d^2}{dx^2} + m^2 \right] \quad ; \quad \lambda_n = m^2 + \left(\frac{n\pi}{L} \right)^2,$$
$$\frac{\det \left[-\frac{d^2}{dx^2} + m^2 \right]}{\det \left[-\frac{d^2}{dx^2} \right]} = \prod_{n=1}^{\infty} \frac{\left[m^2 + \left(\frac{n\pi}{L} \right)^2 \right]}{\left[\left(\frac{n\pi}{L} \right)^2 \right]} = \frac{\sinh(mL)}{mL}$$

GY Theorem :

$$\left[-\frac{d^2}{dx^2} + m^2 \right] \phi(x) = 0 \quad ; \quad \phi(0) = 0 \quad ; \quad \phi'(0) = 1$$

Example: The Helmholtz operator

$$\hat{H} = \left[-\frac{d^2}{dx^2} + m^2 \right] \quad ; \quad \lambda_n = m^2 + \left(\frac{n\pi}{L} \right)^2,$$
$$\frac{\det \left[-\frac{d^2}{dx^2} + m^2 \right]}{\det \left[-\frac{d^2}{dx^2} \right]} = \prod_{n=1}^{\infty} \frac{\left[m^2 + \left(\frac{n\pi}{L} \right)^2 \right]}{\left[\left(\frac{n\pi}{L} \right)^2 \right]} = \frac{\sinh(mL)}{mL}$$

GY Theorem :

$$\left[-\frac{d^2}{dx^2} + m^2 \right] \phi(x) = 0 \quad ; \quad \phi(0) = 0 \quad ; \quad \phi'(0) = 1$$

The solutions, including the "free equation", are $\phi(x) = \frac{\sinh(mx)}{m}$ and $\phi_0(x) = x$.

Example: The Helmholtz operator

$$\hat{H} = \left[-\frac{d^2}{dx^2} + m^2 \right] \quad ; \quad \lambda_n = m^2 + \left(\frac{n\pi}{L} \right)^2,$$
$$\frac{\det \left[-\frac{d^2}{dx^2} + m^2 \right]}{\det \left[-\frac{d^2}{dx^2} \right]} = \prod_{n=1}^{\infty} \frac{\left[m^2 + \left(\frac{n\pi}{L} \right)^2 \right]}{\left[\left(\frac{n\pi}{L} \right)^2 \right]} = \frac{\sinh(mL)}{mL}$$

GY Theorem :

$$\left[-\frac{d^2}{dx^2} + m^2 \right] \phi(x) = 0 \quad ; \quad \phi(0) = 0 \quad ; \quad \phi'(0) = 1$$

The solutions, including the "free equation", are $\phi(x) = \frac{\sinh(mx)}{m}$ and $\phi_0(x) = x$.

$$\Rightarrow \frac{\det \left[-\frac{d^2}{dx^2} + m^2 \right]}{\det \left[-\frac{d^2}{dx^2} \right]} = \frac{\phi(L)}{\phi_0(L)} = \frac{\sinh(mL)}{mL}$$

The G-Y Theorem

The Gel'fand-Yaglom Theorem states that for a 1-dim operator we can compute the determinant without calculating the eigenvalues

G-Y theorem in higher dimensions?

- ▶ How can we apply the G-Y theorem to systems with more dimensions?

G-Y theorem in higher dimensions?

- ▶ How can we apply the G-Y theorem to systems with more dimensions?
- ▶ How do we perform renormalization?

G-Y theorem in higher dimensions?

- ▶ How can we apply the G-Y theorem to systems with more dimensions?
- ▶ How do we perform renormalization?

- ▶ Work with a radially-symmetric background $F_{\mu\nu}(r)$ such that the operator is separable.

G-Y theorem in higher dimensions?

- ▶ How can we apply the G-Y theorem to systems with more dimensions?
- ▶ How do we perform renormalization?

- ▶ Work with a radially-symmetric background $F_{\mu\nu}(r)$ such that the operator is separable.
- ▶ In fact, very interesting systems like instantons, sphalerons, monopoles and vortices are separable.

G-Y theorem in higher dimensions?

- ▶ How can we apply the G-Y theorem to systems with more dimensions?
- ▶ How do we perform renormalization?

- ▶ Work with a radially-symmetric background $F_{\mu\nu}(r)$ such that the operator is separable.
- ▶ In fact, very interesting systems like instantons, sphalerons, monopoles and vortices are separable.
- ▶ The G-Y theorem has been successfully applied to the Scalar theory and renormalization carried out.

G-Y theorem in higher dimensions?

- ▶ How can we apply the G-Y theorem to systems with more dimensions?
- ▶ How do we perform renormalization?

- ▶ Work with a radially-symmetric background $F_{\mu\nu}(r)$ such that the operator is separable.
- ▶ In fact, very interesting systems like instantons, sphalerons, monopoles and vortices are separable.
- ▶ The G-Y theorem has been successfully applied to the Scalar theory and renormalization carried out.
- ▶ New results : Spinor theories.

Radially Symmetric Backgrounds

$$(\not{D}^2 - m^2)\psi \quad ; \quad A_\mu(r) = \eta_{\mu\nu}^3 x_\nu g(r)$$

Radially Symmetric Backgrounds

$$(\mathcal{D}^2 - m^2)\psi \quad ; \quad A_\mu(r) = \eta_{\mu\nu}^3 x_\nu g(r)$$

For this system it is possible to set up a *partial-wave decomposition* :

$$\ln \left[\frac{\det(\mathcal{D}^2 - m^2)}{\det(\partial^2 - m^2)} \right] = \sum_{l=0}^{\infty} \Omega(l) \ln \left[\frac{\det(\mathcal{H}_l + m^2)}{\det(\mathcal{H}_l^0 + m^2)} \right]$$

Radially Symmetric Backgrounds

$$(\mathcal{D}^2 - m^2)\psi \quad ; \quad A_\mu(r) = \eta_{\mu\nu}^3 x_\nu g(r)$$

For this system it is possible to set up a *partial-wave decomposition* :

$$\ln \left[\frac{\det(\mathcal{D}^2 - m^2)}{\det(\partial^2 - m^2)} \right] = \sum_{l=0}^{\infty} \Omega(l) \ln \left[\frac{\det(\mathcal{H}_l + m^2)}{\det(\mathcal{H}_l^0 + m^2)} \right]$$

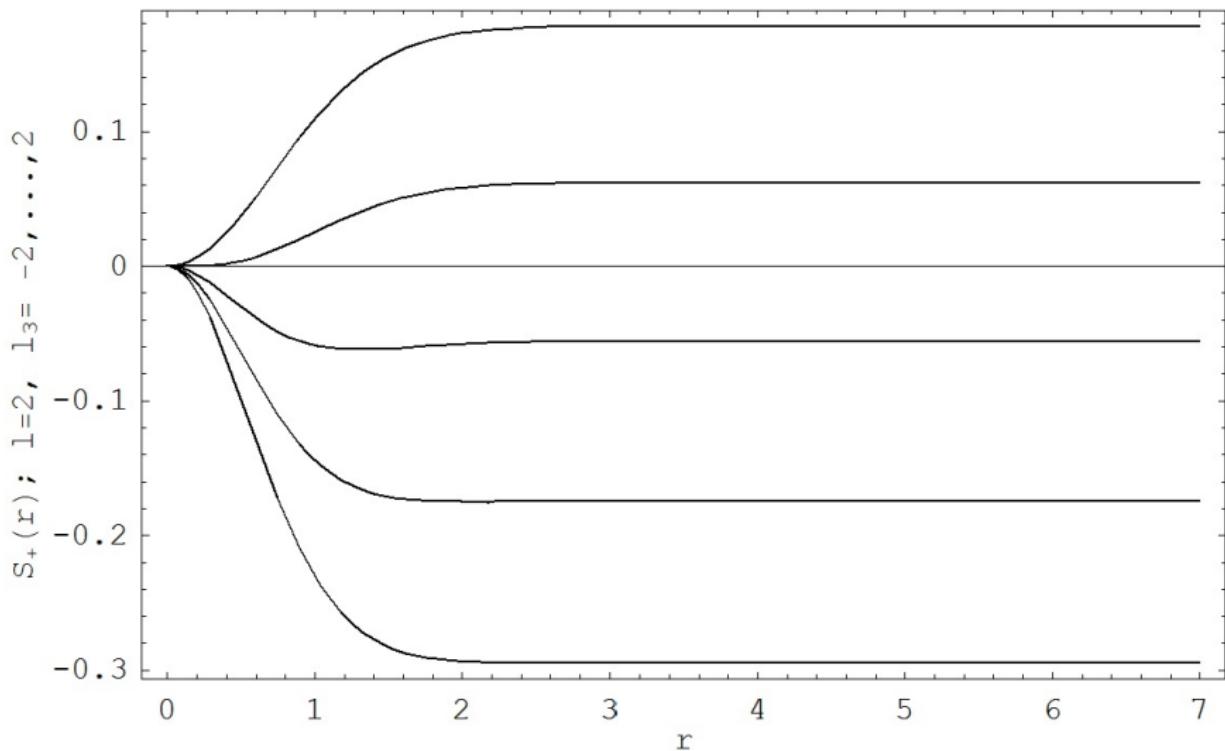
GY Theorem (initial value problem):

$$\frac{d^2 S_l(r)}{dr^2} + \left(\frac{dS_l(r)}{dr} \right)^2 + \left(\frac{1}{r} + 2m \frac{l'_{2l+1}(mr)}{l_{2l+1}(mr)} \right) \frac{dS_l(r)}{dr} = V(r)$$

$$\{ S_l(0) = 0, S'_l(0) = 0 \}$$

where $S_l(r) \equiv \ln \frac{\psi(r)}{\psi^0(r)}$ and $V(r)$ depends on $g(r)$.

We can find $S_l(r)$ numerically



- ▶ Example: $S_l(r)$, $\{l = 2, l_3 = -2, \dots, 2\}$

Is it that simple?

However,

$$\sum_{I=0}^{\infty} \Omega(I) \ln \left[\frac{\det(\mathcal{H}_I + m^2)}{\det(\mathcal{H}_I^0 + m^2)} \right] = \sum_{I=0}^{\infty} \Omega(I) S_I(\infty) \sim \infty !$$

Is it that simple?

However,

$$\sum_{I=0}^{\infty} \Omega(I) \ln \left[\frac{\det(\mathcal{H}_I + m^2)}{\det(\mathcal{H}_I^0 + m^2)} \right] = \sum_{I=0}^{\infty} \Omega(I) S_I(\infty) \sim \infty !$$

In fact

$$\sum_{I=0}^L \Omega(I) S_I(\infty) \sim L^2$$

Is it that simple?

However,

$$\sum_{I=0}^{\infty} \Omega(I) \ln \left[\frac{\det(\mathcal{H}_I + m^2)}{\det(\mathcal{H}_I^0 + m^2)} \right] = \sum_{I=0}^{\infty} \Omega(I) S_I(\infty) \sim \infty !$$

In fact

$$\sum_{I=0}^L \Omega(I) S_I(\infty) \sim L^2$$

- ▶ Not really a surprise, in more than one dimension, we need renormalization.

The strategy

$$\sum_{l=0}^{\infty} \Omega(l) S_l(\infty) = \sum_{l=0}^L \Omega(l) S_l(\infty) + \sum_{l=L+1/2}^{\infty} \Omega(l) S_l(\infty) = \Gamma_{\text{Low}} + \Gamma_{\text{High}}$$

Low-modes : \Rightarrow GY Theorem (numerical solution)

High-modes: \Rightarrow WKB series (analytic calculation), perform renormalization.

The strategy

$$\sum_{l=0}^{\infty} \Omega(l) S_l(\infty) = \sum_{l=0}^L \Omega(l) S_l(\infty) + \sum_{l=L+1/2}^{\infty} \Omega(l) S_l(\infty) = \Gamma_{\text{Low}} + \Gamma_{\text{High}}$$

Low-modes : \Rightarrow GY Theorem (numerical solution)

High-modes: \Rightarrow WKB series (analytic calculation), perform renormalization.

$$\frac{\det(\mathcal{H}_I + m^2)}{\det(\mathcal{H}_I^0 + m^2)} = - \int_0^\infty \frac{ds}{s} e^{-m^2 s} \int_0^\infty dr \{ \Delta_I(r, r; s) - \Delta_I^0(r, r; s) \}$$

where $\Delta_I(r, r'; s) \equiv \langle r | e^{-s\mathcal{H}_I} | r' \rangle$.

The strategy

$$\sum_{l=0}^{\infty} \Omega(l) S_l(\infty) = \sum_{l=0}^L \Omega(l) S_l(\infty) + \sum_{l=L+1/2}^{\infty} \Omega(l) S_l(\infty) = \Gamma_{\text{Low}} + \Gamma_{\text{High}}$$

Low-modes : \Rightarrow GY Theorem (numerical solution)

High-modes: \Rightarrow WKB series (analytic calculation), perform renormalization.

$$\frac{\det(\mathcal{H}_l + m^2)}{\det(\mathcal{H}_l^0 + m^2)} = - \int_0^\infty \frac{ds}{s} e^{-m^2 s} \int_0^\infty dr \{ \Delta_l(r, r; s) - \Delta_l^0(r, r; s) \}$$

where $\Delta_l(r, r'; s) \equiv \langle r | e^{-s\mathcal{H}_l} | r' \rangle$.

$$\Delta_l(r, r; s) = \frac{e^{-s\mathcal{V}_l(r)}}{\sqrt{4\pi s}} \left[1 + \left(\frac{s^3}{12} (\mathcal{V}'_l(r))^2 - \frac{s^2}{6} \mathcal{V}''_l(r) \right) + \dots \right]$$

where $\mathcal{V}_l(r)$ includes a centrifugal term that depends on l .

The calculation

- ▶ First we perform the infinite sum over the angular momentum l . We use the Euler-Maclaurin formula for this:

$$\sum_{n=a}^b f(n) = \int_a^b f(x)dx + \frac{f(a) + f(b)}{2} + \dots$$

- ▶ Next, we integrate over ds , we can perform renormalization at this point.

The calculation

- ▶ First we perform the infinite sum over the angular momentum l . We use the Euler-Maclaurin formula for this:

$$\sum_{n=a}^b f(n) = \int_a^b f(x)dx + \frac{f(a) + f(b)}{2} + \dots$$

- ▶ Next, we integrate over ds , we can perform renormalization at this point.

The calculation

- ▶ First we perform the infinite sum over the angular momentum l . We use the Euler-Maclaurin formula for this:

$$\sum_{n=a}^b f(n) = \int_a^b f(x)dx + \frac{f(a) + f(b)}{2} + \dots$$

- ▶ Next, we integrate over ds , we can perform renormalization at this point.
- ▶ We are left with an integral over dr

$$\begin{aligned}\Gamma_{\text{High}}^{\text{ren}} = & \int_0^\infty dr \left(Q_{\log}(r) \ln L + \sum_{n=0}^2 Q_n(r) L^n + \sum_{n=1}^N Q_{-n}(r) \frac{1}{L^n} \right) \\ & + \mathcal{O}\left(\frac{1}{L^{N+1}}\right)\end{aligned}$$

The Effective Action is finite

The Effective Action is finite

- ▶ Low-modes G-Y theorem (Numerical)

$$\Gamma_{\text{Low}} \sim L^2 \quad ; \quad L \rightarrow \infty$$

The Effective Action is finite

- ▶ Low-modes G-Y theorem (Numerical)

$$\Gamma_{\text{Low}} \sim L^2 \quad ; \quad L \rightarrow \infty$$

- ▶ High-modes WKB series (Analytical)

$$\Gamma_{\text{High}}^{\text{ren}} \sim L^2 \quad ; \quad L \rightarrow \infty$$

The Effective Action is finite

- ▶ Low-modes G-Y theorem (Numerical)

$$\Gamma_{\text{Low}} \sim L^2 \quad ; \quad L \rightarrow \infty$$

- ▶ High-modes WKB series (Analytical)

$$\Gamma_{\text{High}}^{\text{ren}} \sim L^2 \quad ; \quad L \rightarrow \infty$$

But nevertheless, the sum of this two divergent terms, one numerically calculated, and the other one analytically calculated, produces a finite result :

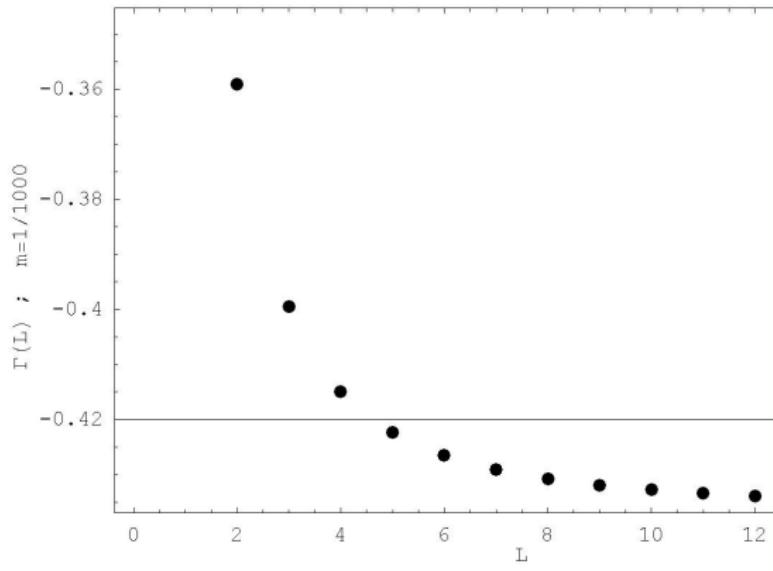
$$\Gamma_{\text{Low}} + \Gamma_{\text{High}}^{\text{ren}} < \infty \quad ; \quad L \rightarrow \infty$$

Dependence on the cutoff L

- ▶ We require $\Gamma^{\text{ren}} = \Gamma_{\text{Low}} + \Gamma_{\text{High}}$ to be finite, but also independent of the arbitrary cutoff L .

Dependence on the cutoff L

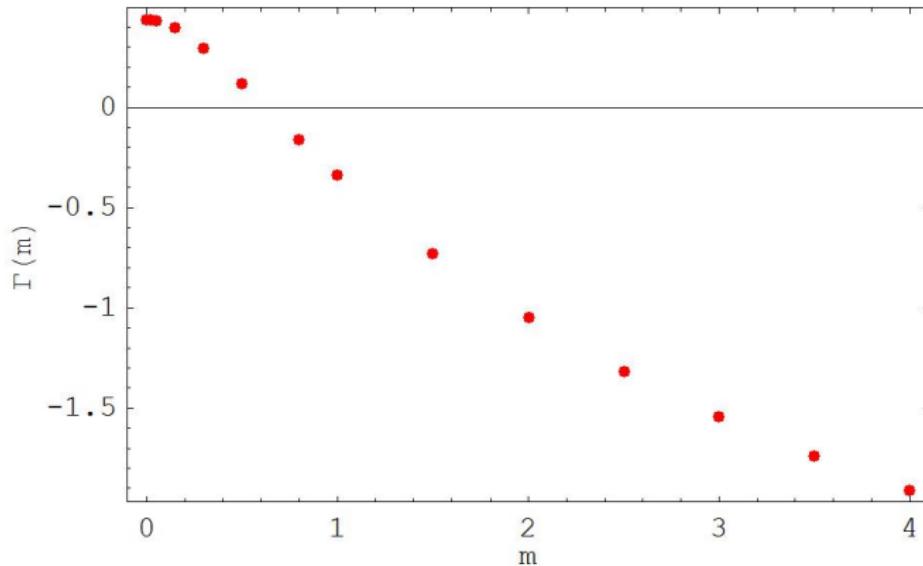
- We require $\Gamma^{\text{ren}} = \Gamma_{\text{Low}} + \Gamma_{\text{High}}$ to be finite, but also independent of the arbitrary cutoff L .



- This shows an example of $\Gamma^{\text{ren}}(L)$ for Spinor QED, with

$$g(r) = B(1 - \text{Tanh}[\beta\sqrt{B}r - \xi]) \quad \{B = 1, \beta = 1, \xi = 1\}$$

The G-Y method works in a wide mass-range



- ▶ This shows an example of $\Gamma^{\text{ren}}(m)$ for Spinor QED, with

$$g(r) = B(1 - \text{Tanh}[\beta\sqrt{Br} - \xi]) \quad \{B = 1, \beta = 1, \xi = 1\}$$

Outline

General aspects, computation

The method

New results

Different background fields

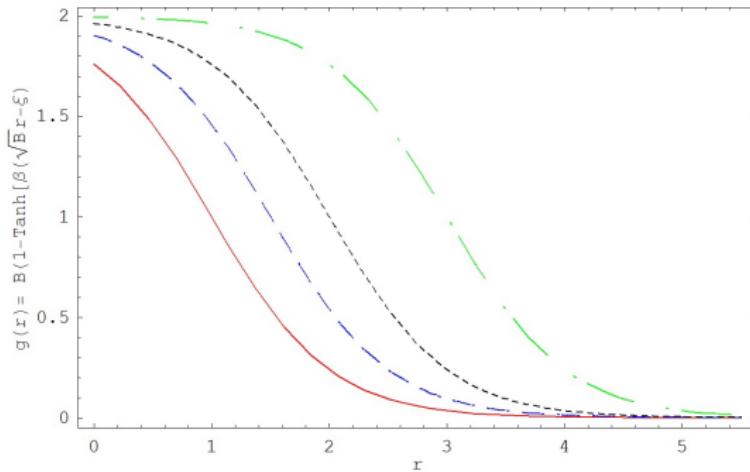
We can now study different field configurations, for example :

$$A_\mu(r) = \eta_{\mu\nu}^3 x_\nu g(r), \quad g(r) = B(1 - \text{Tanh}[\beta\sqrt{B}r - \xi]).$$

Different background fields

We can now study different field configurations, for example :

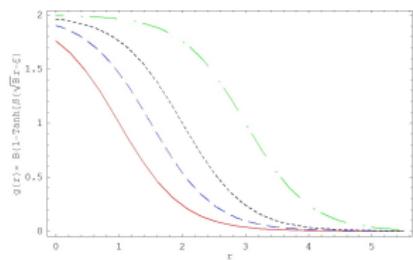
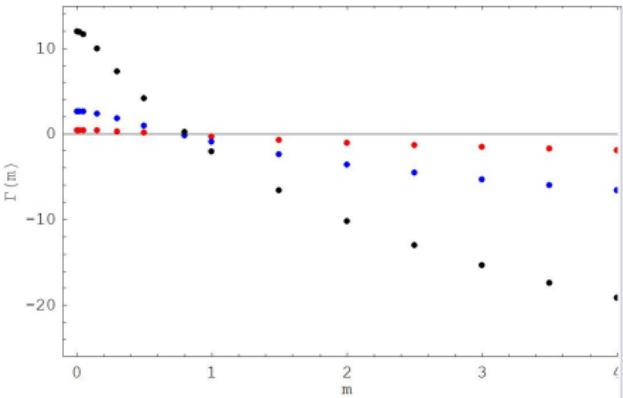
$$A_\mu(r) = \eta_{\mu\nu}^3 x_\nu g(r), \quad g(r) = B(1 - \text{Tanh}[\beta\sqrt{B}r - \xi]).$$



- ▶ The graph shows $g(r)$ for different choices of the *range* parameter :

$$\xi = 1, 3/2, 2, 3$$

Γ in different backgrounds fields

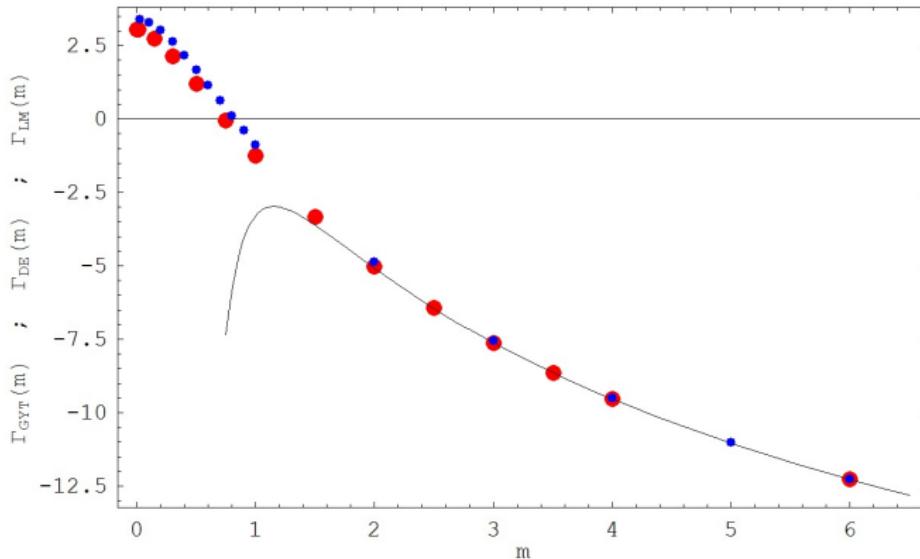


- ▶ The graph on the right shows $\Gamma(m)$, as calculated for different values of ξ .
- ▶ We can study how some general properties of $\Gamma(m)$ depend on some specific characteristics of the background.

G-Y versus approximations : Scalar case

G-Y versus approximations : Scalar case

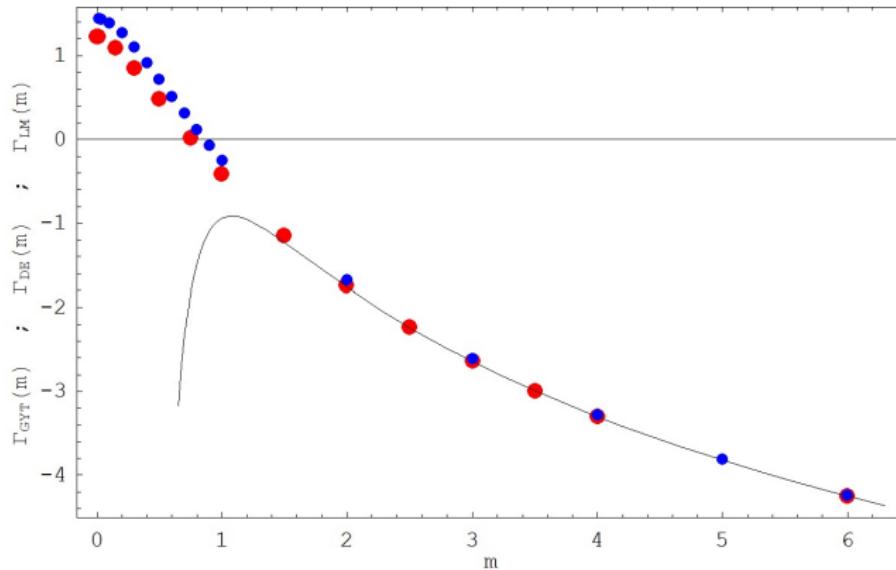
- ▶ First the Scalar case :



- ▶ The graph shows the Effective Action as calculated with the large-mass expansion(line), the derivative expansion(blue), and the G-Y method(red).

$$g(r) = B(1 - \text{Tanh}[\beta\sqrt{B}r - \xi]); \quad \xi = 2, \quad \beta = 1, \quad B = 1$$

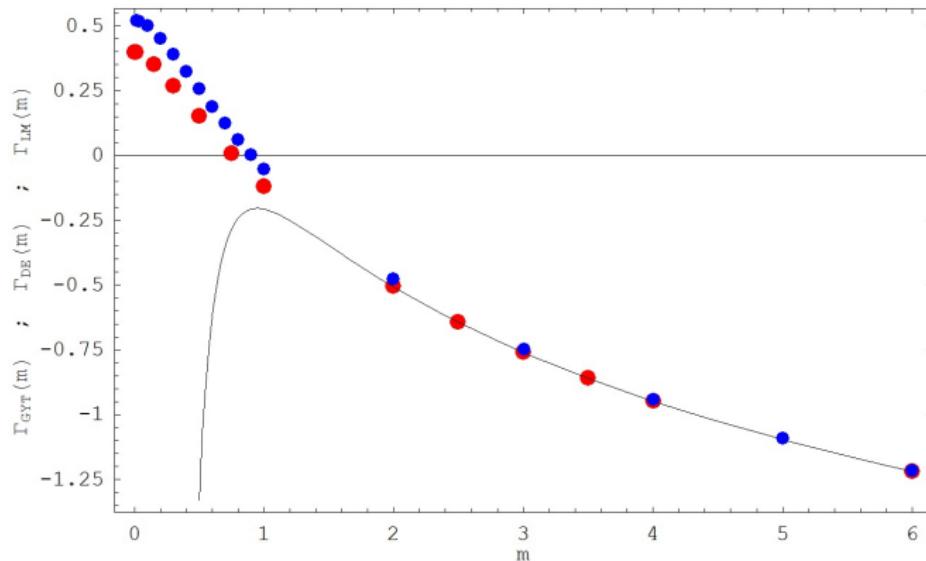
G-Y versus approximations : Scalar case



- ▶ The graph shows the Effective Action as calculated with the large-mass expansion(line), the derivative expansion(blue), and the G-Y method(red).

$$g(r) = B(1 - \text{Tanh}[\beta\sqrt{B}r - \xi]); \quad \xi = \frac{3}{2}, \quad \beta = 1, \quad B = 1$$

G-Y versus approximations : Scalar case



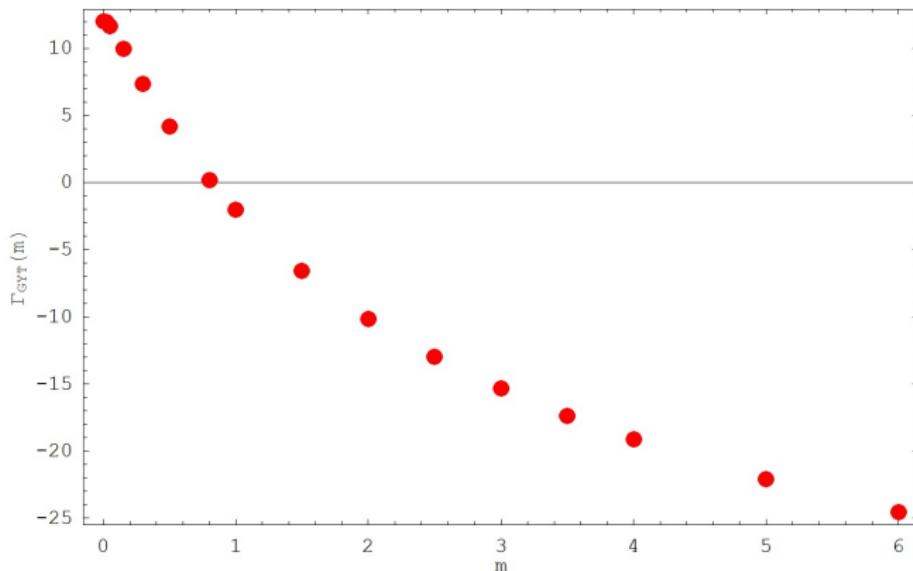
- ▶ The graph shows the Effective Action as calculated with the large-mass expansion(line), the derivative expansion(blue), and the G-Y method(red).

$$g(r) = B(1 - \text{Tanh}[\beta\sqrt{Br} - \xi]); \quad \xi = 1, \quad \beta = 1, \quad B = 1$$

G-Y versus approximations : Spinor Case

G-Y versus approximations : Spinor Case

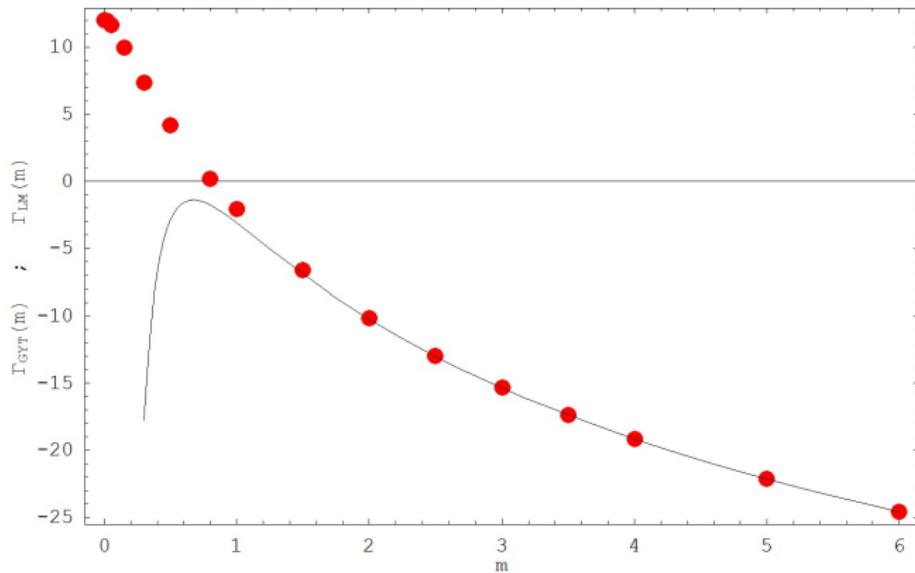
- ▶ The G-Y method behaves well in all mass regimes.



$$g(r) = B(1 - \text{Tanh}[\beta\sqrt{B}r - \xi]); \quad \xi = 2, \quad \beta = 1, \quad B = 1$$

G-Y versus approximations : Spinor Case

- ▶ The large-mass expansion behaves as expected.

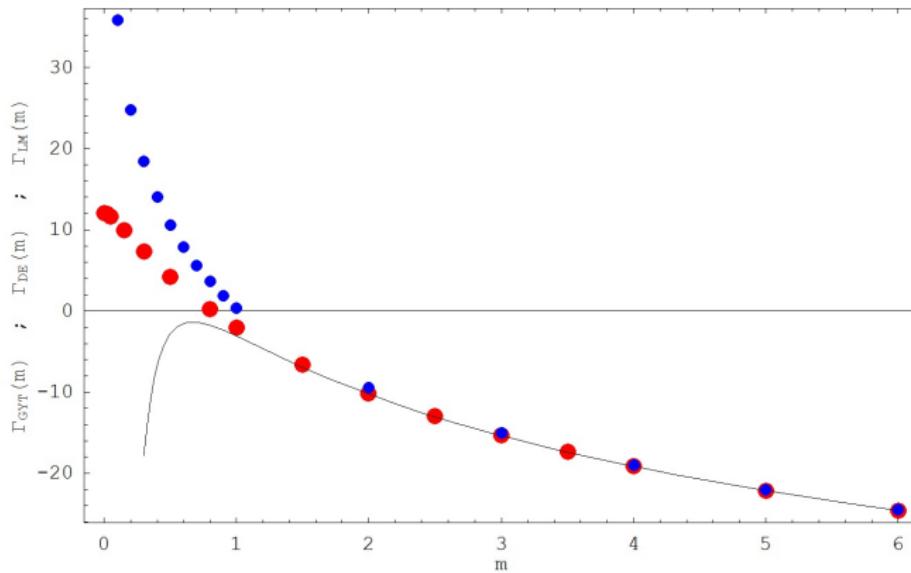


- ▶ Large-mass expansion(line) and G-Y method(red).

$$g(r) = B(1 - \text{Tanh}[\beta\sqrt{Br} - \xi]); \quad \xi = 2, \quad \beta = 1, \quad B = 1$$

G-Y versus approximations : Spinor Case

- Add the Derivative Expansion and we have a surprise!



- Large-mass expansion(line), derivative expansion(blue) and G-Y method(red).

$$g(r) = B(1 - \text{Tanh}[\beta\sqrt{B}r - \xi]); \quad \xi = 2, \quad \beta = 1, \quad B = 1$$

What is wrong in the Derivative Expansion?

$$\begin{aligned}\mathcal{L}_{\text{spinor}}(a, b) &= -\frac{1}{8\pi^2} \int_0^\infty \frac{ds}{s^3} e^{-m^2 s} \left\{ (ab)s^2 \coth(as) \coth(bs) \right. \\ &\quad \left. - 1 - \frac{s^2}{3}(a^2 + b^2) \right\},\end{aligned}$$

$$a^2 + b^2 = \frac{1}{2} F_{\mu\nu} F^{\mu\nu} = 2g(r) \quad ; \quad ab = \frac{1}{4} F_{\mu\nu} \tilde{F}^{\mu\nu} = 2g(r) + rg'(r)$$

- ▶ The small-mass limit corresponds to $s \rightarrow \infty$, this gives :

$$\begin{aligned}\mathcal{L}_{\text{spinor}}(a, b) &\sim -\frac{1}{8\pi^2} \left[ab - \frac{1}{3}(a^2 + b^2) \right] \int_0^\infty \frac{ds}{s} e^{-m^2 s} \\ &\sim \frac{1}{4\pi^2} \left[ab - \frac{1}{3}(a^2 + b^2) \right] \ln m\end{aligned}$$

What is wrong in the Derivative Expansion?

$$\begin{aligned}\mathcal{L}_{\text{spinor}}(a, b) &= -\frac{1}{8\pi^2} \int_0^\infty \frac{ds}{s^3} e^{-m^2 s} \left\{ (ab)s^2 \coth(as)\coth(bs) \right. \\ &\quad \left. - 1 - \frac{s^2}{3}(a^2 + b^2) \right\},\end{aligned}$$

$$a^2 + b^2 = \frac{1}{2} F_{\mu\nu} F^{\mu\nu} = 2g(r) \quad ; \quad ab = \frac{1}{4} F_{\mu\nu} \tilde{F}^{\mu\nu} = 2g(r) + rg'(r)$$

- ▶ The small-mass limit corresponds to $s \rightarrow \infty$, this gives :

$$\begin{aligned}\mathcal{L}_{\text{spinor}}(a, b) &\sim -\frac{1}{8\pi^2} \left[ab - \frac{1}{3}(a^2 + b^2) \right] \int_0^\infty \frac{ds}{s} e^{-m^2 s} \\ &\sim \frac{1}{4\pi^2} \left[ab - \frac{1}{3}(a^2 + b^2) \right] \ln m\end{aligned}$$

- ▶ Note that $\mathcal{L}_{\text{spinor}}(a, b) = \mathcal{L}_{\text{spinor}}(-a, -b)$, the Derivative Expansion is calculating $|a(r)b(r)|$ instead of $a(r)b(r)$.

What is different in the Scalar case?

$$\begin{aligned}\mathcal{L}_{\text{scalar}}(a, b) &= \frac{1}{16\pi^2} \int_0^\infty \frac{ds}{s^3} e^{-m^2 s} \left\{ \frac{(ab)s^2}{\sinh(as)\sinh(bs)} \right. \\ &\quad \left. - 1 + \frac{s^2}{6} (a^2 + b^2) \right\},\end{aligned}$$

$$a^2 + b^2 = \frac{1}{2} F_{\mu\nu} F^{\mu\nu} = 2g(r) \quad ; \quad ab = \frac{1}{4} F_{\mu\nu} \tilde{F}^{\mu\nu} = 2g(r) + rg'(r)$$

- ▶ In the Scalar case the $s \rightarrow \infty$ limit gives :

$$\begin{aligned}\mathcal{L}_{\text{spinor}}(a, b) &\sim \frac{1}{16\pi^2} \left[0 + \frac{1}{6} (a^2 + b^2) \right] \int_0^\infty \frac{ds}{s} e^{-m^2 s} \\ &\sim -\frac{1}{8\pi^2} \left[\frac{1}{6} (a^2 + b^2) \right] \ln m\end{aligned}$$

What is different in the Scalar case?

$$\begin{aligned}\mathcal{L}_{\text{scalar}}(a, b) &= \frac{1}{16\pi^2} \int_0^\infty \frac{ds}{s^3} e^{-m^2 s} \left\{ \frac{(ab)s^2}{\sinh(as)\sinh(bs)} \right. \\ &\quad \left. - 1 + \frac{s^2}{6} (a^2 + b^2) \right\},\end{aligned}$$

$$a^2 + b^2 = \frac{1}{2} F_{\mu\nu} F^{\mu\nu} = 2g(r) \quad ; \quad ab = \frac{1}{4} F_{\mu\nu} \tilde{F}^{\mu\nu} = 2g(r) + rg'(r)$$

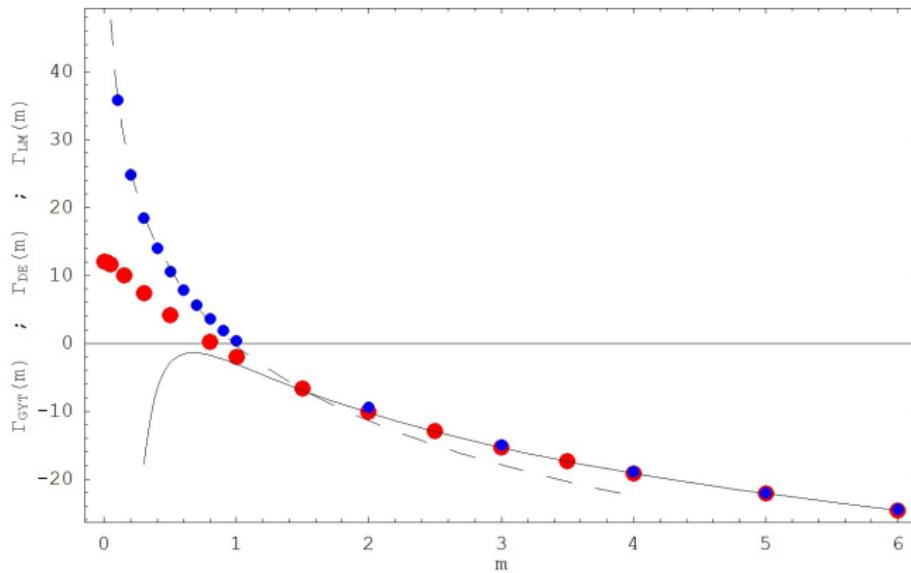
- ▶ In the Scalar case the $s \rightarrow \infty$ limit gives :

$$\begin{aligned}\mathcal{L}_{\text{spinor}}(a, b) &\sim \frac{1}{16\pi^2} \left[0 + \frac{1}{6} (a^2 + b^2) \right] \int_0^\infty \frac{ds}{s} e^{-m^2 s} \\ &\sim -\frac{1}{8\pi^2} \left[\frac{1}{6} (a^2 + b^2) \right] \ln m\end{aligned}$$

- ▶ This means the $|a(r)b(r)|$ contribution vanishes.

G-Y versus approximations

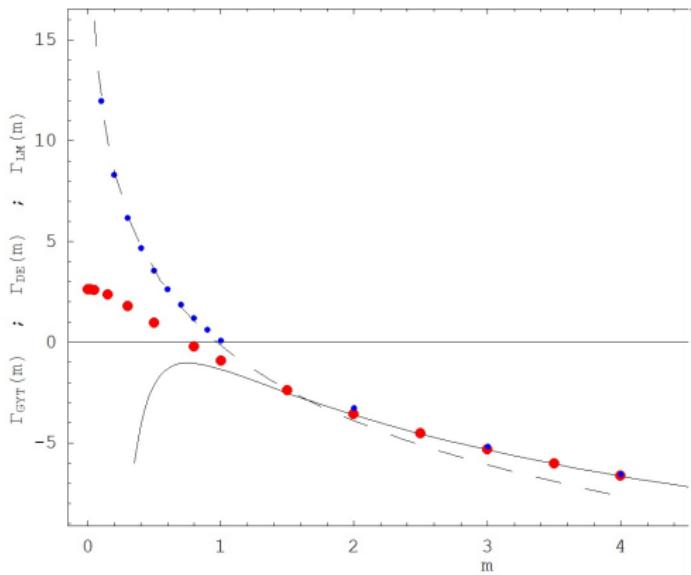
- ▶ The Spinor case.



- ▶ Large-mass expansion(line), Derivative Expansion(blue), G-Y method(red), and
- ▶ Here I also plot $f(m) = (\frac{1}{4\pi^2} \int d^4x |a(r)b(r)|) \ln m$ (dash).

G-Y versus approximations : Spinor

► $\xi = \frac{3}{2}$

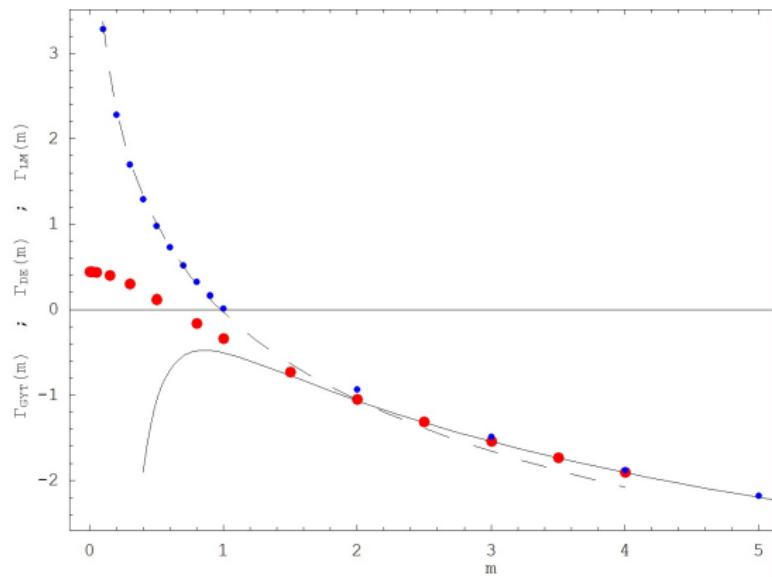


► Large-mass expansion(line), derivative expansion(blue), G-Y method(red), and $f(m)$ (dash).

$$g(r) = B(1 - \text{Tanh}[\beta\sqrt{Br} - \xi]); \quad \xi = 3/2, \quad \beta = 1, \quad B = 1$$

G-Y versus approximations : Spinor

- $\xi = 1$



- Large-mass expansion(line), derivative expansion(blue), G-Y method(red), and $f(m)$ (dash).

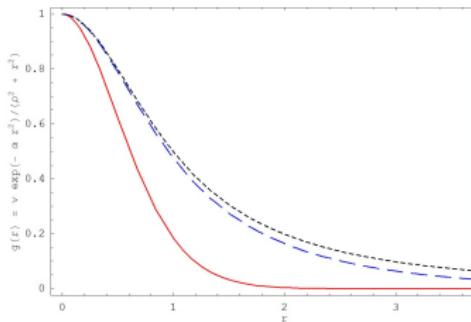
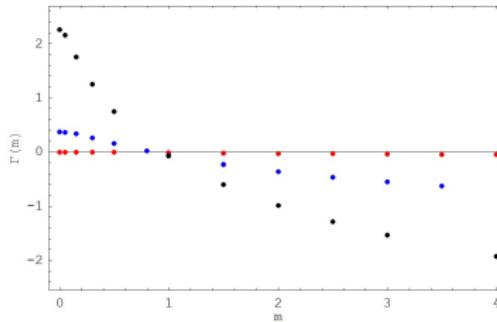
$$g(r) = B(1 - \text{Tanh}[\beta\sqrt{Br} - \xi]); \quad \xi = 1, \quad \beta = 1, \quad B = 1$$

What about zero-modes?

- ▶ We can use successive variations on the parameters in $g(r)$ to gain insight about limiting cases of physical significance.

What about zero-modes?

- ▶ We can use successive variations on the parameters in $g(r)$ to gain insight about limiting cases of physical significance.



- ▶ $g(r) = e^{-\alpha r^2} / (1 + r^2)$ with $\alpha = \{1, 1/20, 1/400\}$.
- ▶ The second graph shows $\Gamma(m)$ for each case, in the limit $\alpha \rightarrow 0$ the system has zero-modes.

Conclusions

Conclusions

- ▶ I have successfully extended the G-Y method for the more physically relevant case of Spinor theories.

Conclusions

- ▶ I have successfully extended the G-Y method for the more physically relevant case of Spinor theories.
- ▶ We can further investigate the usual approximation methods, since very little is known about the Spinor case, specially in the small-mass limit.

Conclusions

- ▶ I have successfully extended the G-Y method for the more physically relevant case of Spinor theories.
- ▶ We can further investigate the usual approximation methods, since very little is known about the Spinor case, specially in the small-mass limit.
- ▶ In the Spinor case, the fall-rate of $A_\mu(r)$ determines the existence or absence of zero-modes. Since our method allows an arbitrary radial dependence, given by $g(r)$, we are able to test different physically interesting field configurations and their limiting cases.

Conclusions

- ▶ I have successfully extended the G-Y method for the more physically relevant case of Spinor theories.
- ▶ We can further investigate the usual approximation methods, since very little is known about the Spinor case, specially in the small-mass limit.
- ▶ In the Spinor case, the fall-rate of $A_\mu(r)$ determines the existence or absence of zero-modes. Since our method allows an arbitrary radial dependence, given by $g(r)$, we are able to test different physically interesting field configurations and their limiting cases.
- ▶ One can now study how some general properties of the Effective Action may depend on some specific aspects of the background field.

Conclusions

- ▶ I have successfully extended the G-Y method for the more physically relevant case of Spinor theories.
- ▶ We can further investigate the usual approximation methods, since very little is known about the Spinor case, specially in the small-mass limit.
- ▶ In the Spinor case, the fall-rate of $A_\mu(r)$ determines the existence or absence of zero-modes. Since our method allows an arbitrary radial dependence, given by $g(r)$, we are able to test different physically interesting field configurations and their limiting cases.
- ▶ One can now study how some general properties of the Effective Action may depend on some specific aspects of the background field.
- ▶ Thanks

END