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But the vacuum is never empty! Virtual (e, e™) pairs turn the
vacuum effectively into a medium.
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Quantum fluctuations in the vacuum introduce non-linear
corrections to the Lagrangian.
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Effective Action and Determinants
The generating functional for QED is

7= /DA/DQ[)D¢ o [ F2ug=i [ $(iD-m)y
= / DAdet(ip — mye~'/ Fiv
/DAe i [ F2,+Indet(ilD—m

» Spinor Effective Action :

= —ilndet(iP —m),
» Scalar Effective Action :
i

=5n det(DA + m?),

where D = y4D,, = v*(9,, — ieA,(X)) .



Soluble cases?

Historically, the first case solved was for a F,,, = const.
background. For example, for a purely magnetic B-field :



Soluble cases?

Historically, the first case solved was for a F,,, = const.
background. For example, for a purely magnetic B-field :

» Euler-Heisenberg (Spinor QED, 1936)

» The corresponding Landau levels are E, = (2n+1)B ¥ B.



Soluble cases?

» Weisskopf (Scalar QED, 1936)

» The corresponding Landau levels are E, = (2n+1)B.



Soluble cases?

» Weisskopf (Scalar QED, 1936)

» The corresponding Landau levels are E, = (2n+1)B.

» Note that zero-modes are possible in the Spinor case but
not in the Scalar case.
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How to compute the Effective Action for a more
general background F,,(x)?

For a more general F,,, the m — oo limit can be systematically
studied by means of the heat-kernel expansion :

2

In det(—D2+m2) :Trln(—lD2+m2) ~ _/ Cfe—mZSTre—s(—lD)
0

2 1 i
s—0 . Tre_s(_p ) ~ WT)Z Z Snan[F]
n=0
_ — CnlF]
= [= Klnm+nz::0 ()

However, for m — 0, there is no general approach.
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We may expand about the soluble constant field cases

Set ~ SolF] + So[F, (OF)?] + Sa[F, (0F )2, (OF)*] + - --

1 GS - { (ab)s? coth(as)coth(bs)

ﬁspinor(aab) = _@ 0 33

2,2
- 1-3(a +b)}

where & + b? = 1F,, F* and ab = }F,, F.
» Derivative Expansion at 0" order :

a—a(x) b— b(x)

» In fact, the DE has been shown to be very accurate in
Scalar theories. What happens in Spinor theories?
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Summary

» The Effective Action is hard to calculate for a general
F..(x) background.

» The Spinor case is generally more difficult than the Scalar
case.

» The physically relevant small-mass limit is difficult to
calculate, even as an approximation.

In this talk | present a recent method for calculating the
Effective Action that improves these three aspects.
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Example: The Helmholtz operator
A a? nm 2
H = [— — + m2 )\n = m + ( L > )

dx?
det[ dxg + mz} ﬁ {mz + (nTﬂ)z} _ sinh(mL)
det[ dxg] n=1 [ nTW)Z} miL

GY Theorem :

2
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Example: The Helmholtz operator

2
mr

2 T
det[ - % - mz} B ﬁ [mz + (nT)z} _sinh(mL)
w[-&] e
GY Theorem :
a? > /
_W—i_m P(x) =0 ; $(0)=0 ; ¢'(0) =1
The solutions, including the "free equation”, are ¢(x) = %

and ¢o(x) =

det[— &+ mz} _ ¢(L) _ sinh(mL)

= det[ d2] SO




The G-Y Theorem

The Gel'fand-Yaglom Theorem states that for a 1-dim operator
we can compute the determinant without calculating the
eigenvalues
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G-Y theorem in higher dimensions?

» How can we apply the G-Y theorem to systems with more
dimensions?

» How do we perform renormalization?

» Work with a radially-symmetric background F,,(r) such
that the operator is separable.

» In fact, very interesting systems like instantons,
sphalerons, monopoles and vortices are separable.

» The G-Y theorem has been successfully applied to the
Scalar theory and renormalization carried out.

» New results : Spinor theories.
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Radially Symmetric Backgrounds

(P2 —mP)y ; Au(r) = 1,x0(r)

For this system it is possible to set up a partial-wave
decomposition :

det(P? —m?) | & det(H; + m?)
n [det(&'2 - m2)] B ZQ(/) n [det(?—l? + m?2)

GY Theorem (initial value problem):

1=0

d2S(r)  [dSi(r)\? (1 b1 (mr)\ dSy(r)
i (57) - (Frempiy) S = vo
{Si(0)=0, Sj(0)=0}

where Si(r) = In j((’)) and V/(r) depends on g(r).




We can find S;(r) numerically

0 1 2 3 4

» Example: Si(r) , {I=2,h=-2,---
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However,
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L
> Q(N)S)(o0) ~ L

Q(1)S)(o0) ~ oo!



s it that simple?

However,
= det(?—l/+m2 >
Q(/ —_— | = QNS ~ 00!
> alin |04 S-S ~
=0 =0
In fact
L
> Q(N)S)(o0) ~ L2
=0

» Not really a surprise, in more than one dimension, we need
renormalization.
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The strategy

0o L
S"Q()Si(00) = >N S0 Z Q(1)S)(0) = MLow+THign
=0 =0 [=L+1/2

Low-modes: = GY Theorem (numerical solution)
High-modes: = WKB series (analytic calculation), perform
renormalization.

2 oo 00
—det(H(’)Jr m) _ _/ as e‘m2s/ dr{a(r,r;s)—Ad(r,r;s)}
det(H} + m?) o S 0

where A(r,r';s) = (r|le=s"|r') .

—SV/(I‘)
A(r,r;8) = ©

47s

where V(r) includes a centrifugal term that depends on /.
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The calculation

» First we perform the infinite sum over the angular
momentum /. We use the Euler-Maclaurin formula for this:

b
Zf(n):/bf(x)derWJr---

» Next, we integrate over ds, we can perform renormalization
at this point.

» We are left with an integral over dr

2
> 1
rsn, = /0 dr (Q,og(r) INL+) " Qu(nL"+ > Qn(N) {5
n=0

n=1
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The Effective Action is finite
» Low-modes G-Y theorem (Numerical)

FL0W~L2 ; L — oo

» High-modes WKB series (Analytical)
B~ . Lo
High '
But nevertheless, the sum of this two divergent terms, one
numerically calculated, and the other one analytically
calculated, produces a finite result :

FLow+r§i"gh<oo : L— oo
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Dependence on the cutoff L

» We require ™" = I'.oy + Iuign to be finite, but also
independent of the arbitrary cutoff L.

-0.36 .

=038

m=1/1000

T(L) &

-0.42

» This shows an example of ""(L) for Spinor QED, with

9(r) = B(1 —Tanh[3VBr—¢]) {B=1,8=1,¢=1}



The G-Y method works in a wide mass-range

0 1 2 3 4
m

» This shows an example of I'™"(m) for Spinor QED, with

9(r)=B(1 —Tanh[3VBr—¢]) {B=1,8=1,¢6=1}
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We can now study different field configurations, for example :

Au(r) = nx,9(r),  g(r) = B(1 — Tanh[5V'Br —¢]).

~Tanh[B(v/Br-€)

B(1

» The graph shows g(r) for different choices of the range
parameter :

§=1,3/2,2,3



[ in different backgrounds fields

» The graph on the right shows I'(m), as calculated for
different values of &.

» We can study how some general properties of I'(m)

depend on some specific characteristics of the
background.
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» First the Scalar case :
2.5 —"‘;_

&‘

0 =.

é

-10 L

=1 2590

0 1 2 3 4 5 6
» The graph shows the Effective Action as calculated with
the large-mass expansion(line), the derivative
expansion(blue), and the G-Y method(red).

ag(r)=B(1 —Tanh[ﬁ\/Er_g]); £€=2 f=1,B=1
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» The graph shows the Effective Action as calculated with
the large-mass expansion(line), the derivative
expansion(blue), and the G-Y method(red).

9(r) = B(1 ~Tan[5VBr —l); €= =1, B=1
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0.5 %
o,
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g ®
z 0.25 //\\
£ -0.5 / 8
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0.75 e
1
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1.25 e
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» The graph shows the Effective Action as calculated with
the large-mass expansion(line), the derivative
expansion(blue), and the G-Y method(red).

9(r) = B(1 —Tanh[3VBr—¢]); ¢=1, =1 B=1
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» The G-Y method behaves well in all mass regimes.

10 ¢

®
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G-Y versus approximations : Spinor Case

» The large-mass expansion behaves as expected.

10

5

—20 L

=25, L L
0 1 2 3 4

5

6

» Large-mass expansion(line) and G-Y method(red).

9(r) = B(1 — Tanh[3V/Br — ¢);

£=2,

B=1,B=1



G-Y versus approximations : Spinor Case

» Add the Derivative Expansion and we have a surprise!

30

20 +

T-wop I

-20 | \t\

» Large-mass expansion(line), derivative expansion(blue)
and G-Y method(red).

g(r)=B(1 — Tanh[3VBr —¢]); ¢=2, B=1,B=1



What is wrong in the Derivative Expansion?
Lspinor(@ b) = —1/00 ds e s {(ab)s coth(as)coth(bs)
spinor\ &, - 87T2 0 33
o o
— 1= (@b )},
a#+b? = %F,WFW =29(r) ; ab= %FWTW =2g(r)+rg'(r)

» The small-mass limit corresponds to s — oo, this gives :

1 *© ds _
ﬁspinor(aa b) ~ 8 a2 |:ab—§(a +b2)]/o ?e m?s
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What is wrong in the Derivative Expansion?

£spinor(aa b) = _81’71'2/0 Z§ —ms {(ab)s coth(as)coth(bs)

s 2
- 1-3(a +b)},

1.
PP — %FWF“” =29(r) ; ab= 4 FuF" =29(r)+1g(r)

» The small-mass limit corresponds to s — oo, this gives :

Lypinor(a, b)  ~ 1 [ab—f(a +b2)]/ as -nes
0 S

- 8r2 3
1 1 5

» Note that Lgpinor(@, b) = Lepinor(—a, —b), the Derivative
Expansion is calculating |a(r)b(r)| instead of a(r)b(r).



What is different in the Scalar case?
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S 2 42
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What is different in the Scalar case?

B 1 o0 ds —mZS (ab)32
£scalar(aab) - 1671'2/0 s3 e {sinh(aS)Sinh(bS)

S 2 42
- 1+ (@)

a+b = %Fuu’:’” =29(r) ; ab= %FWI:'“” =29(r)+rg'(r)

» In the Scalar case the s — oo limit gives :

1 1 *ds 2
1

~5.2 [15 (& + bz)] Inm

» This means the |a(r)b(r)| contribution vanishes.



G-Y versus approximations

» The Spinor case.
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» Large-mass expansion(line), Derivative Expansion(blue),
G-Y method(red), and

> Here | also plot f(m) = (;1; [ d*x|a(r)b(r)[) In m (dash).
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» Large-mass expansion(line), derivative expansion(blue),
G-Y method(red), and f(m) (dash).

g(r) = Bl — Tanh[8VBr—¢]); ¢=3/2, B=1,B=1



G-Y versus approximations

i Ty (m)

>

b 3
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v
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: Spinor

Large-mass expansion(line), derivative expansion(blue),
G-Y method(red), and f(m) (dash).

9(r) = B(1 — Tanh[3V'Br — ¢]);

£=1,
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» We can use successive variations on the parameters in
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What about zero-modes?

» We can use successive variations on the parameters in
g(r) to gain insight about limiting cases of physical
significance.

> g(r) = e /(1 + r2) with o = {1, 1/20, 1/400 }.
» The second graph shows I'(m) for each case, in the limit
a — 0 the system has zero-modes.
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physically relevant case of Spinor theories.

» We can further investigate the usual approximation
methods, since very little is known about the Spinor case,
specially in the small-mass limit.

» In the Spinor case, the fall-rate of A,(r) determines the
existence or absence of zero-modes. Since our method
allows an arbitrary radial dependence, given by g(r), we
are able to test different physically interesting field
configurations and their limiting cases.

» One can now study how some general properties of the
Effective Action may depend on some specific aspects of
the background field.

» Thanks
END



	General aspects, computation
	The method
	New results

