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The effective action in QED

The classical Maxwell Lagrangian is :

LMaxwell =
1
2

(~E2 − ~B2)

But the vacuum is never empty! Virtual (e+, e−) pairs turn the
vacuum effectively into a medium.

Leff = LMaxwell +
2(~/mc)3

45mc2

(
e2

4π~c

)2

[(~E2−~B2)2 +7(~E ·~B)2]+· · ·

Quantum fluctuations in the vacuum introduce non-linear
corrections to the Lagrangian.
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Physical consequences

I Light-light scattering

I Vacuum-birefringence

These effects are encoded in the Effective Action.
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Effective Action and Determinants
The generating functional for QED is

Z =

∫
DA

∫
Dψ̄Dψ e−i

∫
F 2
µνe−i

∫
ψ̄(i 6D−m)ψ

=

∫
DA det(i 6D −m)e−i

∫
F 2
µν

=

∫
DA e−i

∫
F 2
µν+ln det(i 6D−m)

I Spinor Effective Action :

Γ = −i ln det(i 6D −m) ,

I Scalar Effective Action :

Γ =
i
2

ln det(D2
µ + m2) ,

where 6D ≡ γµDµ = γµ(∂µ − ieAµ(x)) .
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Soluble cases?

Historically, the first case solved was for a Fµν = const .
background. For example, for a purely magnetic B-field :

I Euler-Heisenberg (Spinor QED, 1936)

I The corresponding Landau levels are En = (2n + 1)B ∓ B.
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How to compute the Effective Action for a more
general background Fµν(x)?

For a more general Fµν , the m→∞ limit can be systematically
studied by means of the heat-kernel expansion :

ln det(−6D2+m2) = Tr ln(−6D2+m2) ∼ −
∫ ∞

0

ds
s

e−m2sTre−s(− 6D2
)

s → 0 : Tre−s(− 6D2
) ∼ 1

(4πs)2

∞∑
n=0

snan[F ]

=⇒ Γ = K ln m +
∞∑

n=0

Cn[F ]

(m2)n

However, for m→ 0, there is no general approach.
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The Derivative Expansion

We may expand about the soluble constant field cases

Seff ≈ S0[F ] + S2[F , (∂F )2] + S4[F , (∂F )2, (∂F )4] + · · ·

Lspinor(a,b) = − 1
8π2

∫ ∞
0

ds
s3 e−m2s

{
(ab)s2 coth(as)coth(bs)

− 1− s2

3
(a2 + b2)

}
where a2 + b2 = 1

2FµνFµν and ab = 1
4Fµν F̃µν .

I Derivative Expansion at 0th order :

a→ a(x) b → b(x)

I In fact, the DE has been shown to be very accurate in
Scalar theories. What happens in Spinor theories?
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Summary

I The Effective Action is hard to calculate for a general
Fµν(x) background.

I The Spinor case is generally more difficult than the Scalar
case.

I The physically relevant small-mass limit is difficult to
calculate, even as an approximation.

In this talk I present a recent method for calculating the
Effective Action that improves these three aspects.
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The Gel’Fand-Yaglom theorem

A typical way to calculate a determinant[
− d2

dx2 + V (x)

]
ψ(x) = λψ(x) ; ψ(0) = ψ(L) = 0

Do we need to compute the eigenvalues {λ1, λ2, · · · } ?

Gel’fand-Yaglom : Instead we solve the initial value problem.[
− d2

dx2 + V (x)

]
φ(x) = 0 ; φ(0) = 0 ; φ′(0) = 1

⇒ det
[
− d2

dx2 + V (x)
]

= φ(L) .
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Example: The Helmholtz operator

Ĥ =

[
− d2

dx2 + m2

]
; λn = m2 +

(
nπ
L

)2

,

det
[
− d2

dx2 + m2
]

det
[
− d2

dx2

] =
∞∏

n=1

[
m2 + (nπ

L )2
]

[
(nπ

L )2
] =

sinh(mL)

mL

GY Theorem :[
− d2

dx2 + m2

]
φ(x) = 0 ; φ(0) = 0 ; φ′(0) = 1

The solutions, including the ”free equation”, are φ(x) = sinh(mx)
m

and φ0(x) = x .

⇒
det
[
− d2

dx2 + m2
]

det
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− d2
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The G-Y Theorem

The Gel’fand-Yaglom Theorem states that for a 1-dim operator
we can compute the determinant without calculating the
eigenvalues



G-Y theorem in higher dimensions?

I How can we apply the G-Y theorem to systems with more
dimensions?

I How do we perform renormalization?

I Work with a radially-symmetric background Fµν(r) such
that the operator is separable.

I In fact, very interesting systems like instantons,
sphalerons, monopoles and vortices are separable.

I The G-Y theorem has been successfully applied to the
Scalar theory and renormalization carried out.

I New results : Spinor theories.
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Radially Symmetric Backgrounds

( 6D2 −m2)ψ ; Aµ(r) = η3
µνxνg(r)

For this system it is possible to set up a partial-wave
decomposition :

ln

[
det( 6D2 −m2)

det(6∂2 −m2)

]
=
∞∑

l=0

Ω(l) ln

[
det(Hl + m2)

det(H0
l + m2)

]

GY Theorem (initial value problem):

d2Sl(r)

dr2 +

(
dSl(r)

dr

)2

+

(
1
r

+ 2m
I′2l+1(mr)

I2l+1(mr)

)
dSl(r)

dr
= V (r)

{Sl(0) = 0 , S′l (0) = 0 }

where Sl(r) ≡ ln ψ(r)
ψ0(r)

and V (r) depends on g(r).
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We can find Sl(r) numerically

I Example: Sl(r) , {l = 2, l3 = −2, · · · ,2}



Is it that simple?

However,

∞∑
l=0

Ω(l) ln

[
det(Hl + m2)

det(H0
l + m2)

]
=
∞∑

l=0

Ω(l)Sl(∞) ∼ ∞ !

In fact
L∑

l=0

Ω(l)Sl(∞) ∼ L2

I Not really a surprise, in more than one dimension, we need
renormalization.
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The strategy

∞∑
l=0

Ω(l)Sl(∞) =
L∑

l=0

Ω(l)Sl(∞)+
∞∑

l=L+1/2

Ω(l)Sl(∞) = ΓLow+ΓHigh

Low-modes : ⇒ GY Theorem (numerical solution)
High-modes: ⇒ WKB series (analytic calculation), perform
renormalization.

det(Hl + m2)

det(H0
l + m2)

= −
∫ ∞

0

ds
s

e−m2s
∫ ∞

0
dr{∆l(r , r ; s)−∆0

l (r , r ; s)}

where ∆l(r , r ′; s) ≡ 〈r |e−sHl |r ′〉 .

∆l(r , r ; s) =
e−sVl (r)

√
4πs

[
1 +

(
s3

12
(V ′

l (r))2 − s2

6
V ′′

l (r)

)
+ · · ·

]

where Vl(r) includes a centrifugal term that depends on l .
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The calculation

I First we perform the infinite sum over the angular
momentum l . We use the Euler-Maclaurin formula for this:

b∑
n=a

f (n) =

∫ b

a
f (x)dx +

f (a) + f (b)

2
+ · · ·

I Next, we integrate over ds, we can perform renormalization
at this point.

I We are left with an integral over dr

Γren
High =

∫ ∞
0

dr

(
Qlog(r) ln L +

2∑
n=0

Qn(r)Ln +
N∑

n=1

Q−n(r)
1
Ln

)

+O

(
1

LN+1

)
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The Effective Action is finite

I Low-modes G-Y theorem (Numerical)

ΓLow ∼ L2 ; L→∞

I High-modes WKB series (Analytical)

Γren
High ∼ L2 ; L→∞

But nevertheless, the sum of this two divergent terms, one
numerically calculated, and the other one analytically
calculated, produces a finite result :

ΓLow + Γren
High <∞ ; L→∞
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Dependence on the cutoff L
I We require Γren = ΓLow + ΓHigh to be finite, but also

independent of the arbitrary cutoff L.

I This shows an example of Γren(L) for Spinor QED, with

g(r) = B(1− Tanh[β
√

Br − ξ]) {B = 1, β = 1, ξ = 1}
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The G-Y method works in a wide mass-range

I This shows an example of Γren(m) for Spinor QED, with

g(r) = B(1− Tanh[β
√

Br − ξ]) {B = 1, β = 1, ξ = 1}
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Different background fields
We can now study different field configurations, for example :

Aµ(r) = η3
µνxνg(r), g(r) = B(1− Tanh[β

√
Br − ξ]) .

I The graph shows g(r) for different choices of the range
parameter :

ξ = 1, 3/2, 2, 3



Different background fields
We can now study different field configurations, for example :

Aµ(r) = η3
µνxνg(r), g(r) = B(1− Tanh[β

√
Br − ξ]) .

I The graph shows g(r) for different choices of the range
parameter :

ξ = 1, 3/2, 2, 3



Γ in different backgrounds fields

I The graph on the right shows Γ(m), as calculated for
different values of ξ.

I We can study how some general properties of Γ(m)
depend on some specific characteristics of the
background.



G-Y versus approximations : Scalar case

I First the Scalar case :

I The graph shows the Effective Action as calculated with
the large-mass expansion(line), the derivative
expansion(blue), and the G-Y method(red).
g(r) = B(1− Tanh[β

√
Br − ξ]); ξ = 2, β = 1, B = 1
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G-Y versus approximations : Spinor Case

I The G-Y method behaves well in all mass regimes.

g(r) = B(1− Tanh[β
√

Br − ξ]); ξ = 2, β = 1, B = 1
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G-Y versus approximations : Spinor Case

I The large-mass expansion behaves as expected.

I Large-mass expansion(line) and G-Y method(red).
g(r) = B(1− Tanh[β

√
Br − ξ]); ξ = 2, β = 1, B = 1



G-Y versus approximations : Spinor Case

I Add the Derivative Expansion and we have a surprise!

I Large-mass expansion(line), derivative expansion(blue)
and G-Y method(red).
g(r) = B(1− Tanh[β

√
Br − ξ]); ξ = 2, β = 1, B = 1



What is wrong in the Derivative Expansion?

Lspinor(a,b) = − 1
8π2

∫ ∞
0

ds
s3 e−m2s

{
(ab)s2 coth(as)coth(bs)

− 1− s2

3
(a2 + b2)

}
,

a2 +b2 =
1
2

FµνFµν = 2g(r) ; ab =
1
4

Fµν F̃µν = 2g(r)+rg′(r)

I The small-mass limit corresponds to s →∞, this gives :

Lspinor(a,b) ∼ − 1
8π2

[
ab − 1

3
(a2 + b2)

] ∫ ∞
0

ds
s

e−m2s

∼ 1
4π2

[
ab − 1

3
(a2 + b2)

]
ln m

I Note that Lspinor(a,b) = Lspinor(−a,−b), the Derivative
Expansion is calculating |a(r)b(r)| instead of a(r)b(r).
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What is different in the Scalar case?

Lscalar(a,b) =
1

16π2

∫ ∞
0

ds
s3 e−m2s

{ (ab)s2

sinh(as)sinh(bs)

− 1 +
s2

6
(a2 + b2)

}
,

a2 +b2 =
1
2

FµνFµν = 2g(r) ; ab =
1
4

Fµν F̃µν = 2g(r)+rg′(r)

I In the Scalar case the s →∞ limit gives :

Lspinor(a,b) ∼ 1
16π2

[
0 +

1
6

(a2 + b2)
] ∫ ∞

0

ds
s

e−m2s

∼ − 1
8π2

[1
6

(a2 + b2)
]

ln m

I This means the |a(r)b(r)| contribution vanishes.



What is different in the Scalar case?

Lscalar(a,b) =
1

16π2

∫ ∞
0

ds
s3 e−m2s

{ (ab)s2

sinh(as)sinh(bs)

− 1 +
s2

6
(a2 + b2)

}
,

a2 +b2 =
1
2

FµνFµν = 2g(r) ; ab =
1
4

Fµν F̃µν = 2g(r)+rg′(r)

I In the Scalar case the s →∞ limit gives :

Lspinor(a,b) ∼ 1
16π2

[
0 +

1
6

(a2 + b2)
] ∫ ∞

0

ds
s

e−m2s

∼ − 1
8π2

[1
6

(a2 + b2)
]

ln m

I This means the |a(r)b(r)| contribution vanishes.



G-Y versus approximations

I The Spinor case.

I Large-mass expansion(line), Derivative Expansion(blue),
G-Y method(red), and

I Here I also plot f (m) = ( 1
4π2

∫
d4x |a(r)b(r)|) ln m (dash).



G-Y versus approximations : Spinor

I ξ = 3
2

I Large-mass expansion(line), derivative expansion(blue),
G-Y method(red), and f (m) (dash).

g(r) = B(1− Tanh[β
√

Br − ξ]); ξ = 3/2, β = 1, B = 1



G-Y versus approximations : Spinor

I ξ = 1

I Large-mass expansion(line), derivative expansion(blue),
G-Y method(red), and f (m) (dash).

g(r) = B(1− Tanh[β
√

Br − ξ]); ξ = 1, β = 1, B = 1



What about zero-modes?

I We can use successive variations on the parameters in
g(r) to gain insight about limiting cases of physical
significance.

I g(r) = e−αr2
/(1 + r2) with α = {1, 1/20, 1/400 }.

I The second graph shows Γ(m) for each case, in the limit
α→ 0 the system has zero-modes.
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Conclusions

I I have successfully extended the G-Y method for the more
physically relevant case of Spinor theories.

I We can further investigate the usual approximation
methods, since very little is known about the Spinor case,
specially in the small-mass limit.

I In the Spinor case, the fall-rate of Aµ(r) determines the
existence or absence of zero-modes. Since our method
allows an arbitrary radial dependence, given by g(r), we
are able to test different physically interesting field
configurations and their limiting cases.

I One can now study how some general properties of the
Effective Action may depend on some specific aspects of
the background field.

I Thanks
END
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