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Quantitatively, according to the standard Big Bang the-
ory, the CMB at the surface of last-scattering should
have consisted of about 104 causally disconnected re-
gions. However, the observed near-homogeneity of the
CMB tells us that the universe was quasi-homogeneous
at the time of last-scattering. In the standard Big Bang
theory, this uniformity of the CMB has no explanation
and must be assumed as an (extremely fine-tuned) initial
condition.

4.2. Solution of the Big Bang Problems

Inflationary cosmology is based on the hypothesis that
the early universe expanded exponentially quickly for a
fraction of a second. During inflation the rate of expan-
sion was accelerating and a small homogeneous patch not
bigger than 10−26 m (orders of magnitudes smaller than
an atomic nucleus) grew within about 10−35 seconds to
macroscopic size of order 1 meter. Eventually the accel-
eration stopped and the expansion slowed down to the
more moderate rate that has characterized our universe
ever since. The 1 meter patch grew to become the ob-
servable universe.

We will now demonstrate how this brief period of ac-
celerated expansion solves the problems of the standard
Big Bang cosmology:

Resolution of the flatness problem
During a period of accelerated expansion, ä > 0, a flat

universe Ω = 1 becomes an attractor solution. If inflation
lasted for at least 60 e-folds (i.e. the scale factor grew by
at least a factor of e60 during inflation), then Ω is driven
so close to 1 that we will still observe it near 1 today
(even though Ω = 1 is unstable).

Resolution of the horizon problem
During inflation the universe expands exponentially

and physical wavelengths grow faster than the horizon.
Fluctuations are hence stretched outside of the horizon
during inflation and re-enter the horizon in the late uni-
verse. Scales that are outside of the horizon at CMB
decoupling were in fact inside the horizon before infla-
tion. The region of space corresponding to the observ-
able universe therefore was in thermal equilibrium before
inflation and the uniformity of the CMB is given a causal
explanation. A brief period of acceleration therefore re-
sults in the ability to correlate space over apparently im-
possible distances.

4.3. Classical Dynamics

Cosmic acceleration
How could the expansion of the universe have been

accelerating?
Paradoxically, the answer lies in our modern under-

standing of gravity. In Einstein’s general theory of rel-
ativity gravity couples both to mass (or energy) and to
pressure. This is in contrast to Newton’s theory of grav-
ity where the gravitational field couples only to mass.
Recall Einstein’s equation for the acceleration of the scale
factor a(t):

1
a

d2a

dt2
= −4πG

3
(ρ + 3p) . (10)

Notice that both energy density ρ and pressure p appear
as sources for ä. Ordinary matter has positive energy
density, ρ > 0, and positive (or zero) pressure, p ≥ 0. The
minus sign of the source term on the r.h.s. in equation
(10) then determines that the expansion of the universe is
strictly decelerating. This is consistent with our intuition
about gravity: the mutual attraction of all matter in the
universe causes the expansion to slow down.

reheating

FIG. 8: Example of an inflaton potential. Acceleration oc-
curs when the potential energy of the field, V (φ), dominates
over its kinetic energy, 1

2 φ̇2. Inflation ends at φend when the
kinetic energy has grown to become comparable to the po-
tential energy, 1

2 φ̇2 ≈ V . CMB fluctuations are created by
quantum fluctuations δφ about 60 e-folds before the end of
inflation. At reheating, the energy density of the inflaton is
converted into radiation.

Inflation relies on the early universe being dominated
by a very different form of energy. This is often mod-
eled by a scalar field4 φ (the “inflaton”) with potential
energy density V (φ) (see Fig. 8). One imagines that dur-
ing inflation the field is displaced from its global vacuum
in a state of high energy density called the “false vac-
uum”. One further assumes that in the early universe,

4 This may be a fundamental scalar field like the Higgs field or it
may be a composite field. More generally, we may think of φ
as an order parameter or ‘clock’ measuring the evolution of the
energy density during inflation.
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ΛCDM = introduces ingredients which 
cannot be explained by Standard Model 
of Particle Physics. 
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The Inflationary Paradigm

• A period of quasi exponential accelerated expansion in the very early 
Universe due to vacuum energy domination. 

• Explains why the Universe is approximately 
homogeneous and spatially flat.

• Governed by the dynamics of a scalar field 
with very flat potential.        

• Leading mechanism to explain observed 
inhomogeneities in the Universe: provides the 
seeds for large scale structure formation. 
Fluctuations of           fluctuations of energy 
density          temperature fluctuations       in 
the CMB (Cosmic Microwave Background).

δρ → δT
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CMB tells us that the universe was quasi-homogeneous
at the time of last-scattering. In the standard Big Bang
theory, this uniformity of the CMB has no explanation
and must be assumed as an (extremely fine-tuned) initial
condition.

4.2. Solution of the Big Bang Problems

Inflationary cosmology is based on the hypothesis that
the early universe expanded exponentially quickly for a
fraction of a second. During inflation the rate of expan-
sion was accelerating and a small homogeneous patch not
bigger than 10−26 m (orders of magnitudes smaller than
an atomic nucleus) grew within about 10−35 seconds to
macroscopic size of order 1 meter. Eventually the accel-
eration stopped and the expansion slowed down to the
more moderate rate that has characterized our universe
ever since. The 1 meter patch grew to become the ob-
servable universe.

We will now demonstrate how this brief period of ac-
celerated expansion solves the problems of the standard
Big Bang cosmology:

Resolution of the flatness problem
During a period of accelerated expansion, ä > 0, a flat

universe Ω = 1 becomes an attractor solution. If inflation
lasted for at least 60 e-folds (i.e. the scale factor grew by
at least a factor of e60 during inflation), then Ω is driven
so close to 1 that we will still observe it near 1 today
(even though Ω = 1 is unstable).

Resolution of the horizon problem
During inflation the universe expands exponentially

and physical wavelengths grow faster than the horizon.
Fluctuations are hence stretched outside of the horizon
during inflation and re-enter the horizon in the late uni-
verse. Scales that are outside of the horizon at CMB
decoupling were in fact inside the horizon before infla-
tion. The region of space corresponding to the observ-
able universe therefore was in thermal equilibrium before
inflation and the uniformity of the CMB is given a causal
explanation. A brief period of acceleration therefore re-
sults in the ability to correlate space over apparently im-
possible distances.

4.3. Classical Dynamics

Cosmic acceleration
How could the expansion of the universe have been

accelerating?
Paradoxically, the answer lies in our modern under-

standing of gravity. In Einstein’s general theory of rel-
ativity gravity couples both to mass (or energy) and to
pressure. This is in contrast to Newton’s theory of grav-
ity where the gravitational field couples only to mass.
Recall Einstein’s equation for the acceleration of the scale
factor a(t):

1
a

d2a

dt2
= −4πG

3
(ρ + 3p) . (10)

Notice that both energy density ρ and pressure p appear
as sources for ä. Ordinary matter has positive energy
density, ρ > 0, and positive (or zero) pressure, p ≥ 0. The
minus sign of the source term on the r.h.s. in equation
(10) then determines that the expansion of the universe is
strictly decelerating. This is consistent with our intuition
about gravity: the mutual attraction of all matter in the
universe causes the expansion to slow down.

reheating

FIG. 8: Example of an inflaton potential. Acceleration oc-
curs when the potential energy of the field, V (φ), dominates
over its kinetic energy, 1

2 φ̇2. Inflation ends at φend when the
kinetic energy has grown to become comparable to the po-
tential energy, 1

2 φ̇2 ≈ V . CMB fluctuations are created by
quantum fluctuations δφ about 60 e-folds before the end of
inflation. At reheating, the energy density of the inflaton is
converted into radiation.

Inflation relies on the early universe being dominated
by a very different form of energy. This is often mod-
eled by a scalar field4 φ (the “inflaton”) with potential
energy density V (φ) (see Fig. 8). One imagines that dur-
ing inflation the field is displaced from its global vacuum
in a state of high energy density called the “false vac-
uum”. One further assumes that in the early universe,

4 This may be a fundamental scalar field like the Higgs field or it
may be a composite field. More generally, we may think of φ
as an order parameter or ‘clock’ measuring the evolution of the
energy density during inflation.

δφ →

• Can explain the absence of relic particles and 
defects predicted by fundamental physics.
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Table 3.14: AMS Binary Relations.
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. \lesssim / \gtrsim 0 \triangleq

1 \lessapprox 2 \gtrapprox 3 \bumpeq

≶ \lessgtr ≷ \gtrless 6 \Bumpeq

7 \lesseqgtr 8 \gtreqless ∼ \thicksim

9 \lesseqqgtr : \gtreqqless ≈ \thickapprox

; \preccurlyeq < \succcurlyeq % \approxeq

= \curlyeqprec > \curlyeqsucc ? \backsim

@ \precsim A \succsim B \backsimeq
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Q \vartriangleleft R \vartriangleright S \blacktriangleleft
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Table 3.15: AMS Arrows.
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ReviwedReviwedReviewed

How does moduli stabilisation changes previous results on brane inflation?

[Kachru, Kallosh, Linde, Maldacena, McAllister and Trivedi ’03].

Within KKLT framework

inflationary potential can be re-

computed. Generically, , due

to an interplay between the potential

which stabilises the moduli and the

potential of the inflaton. Inlfation can

be obtained but need a large fine

tuning of the parameters (

level).
D3

RR flux
Calabi!Yau

D3

Throat

NSNS flux

Partial solutions to this problem have been proposed. brane inflation is

possible but not generic. [Hsu, Kallosh and Prokushkin ’03; Firouzjahi and Tye ’03; Hsu and

Kallosh ’04; Burgess, Cline, Stoica and Quevedo ’04]
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D-Brane Inflation
• A D3-brane moves through a warped space. Internal fluxes help stabilise 
dangerous light scalar fields. 

• D-brane position(s) play role of inflaton(s)⇒ Geometrical interpretation of 
inflaton.  

Annu. Rev. Nuc. Part. Sci. 2009 59

tension. The exit from inflation occurs when open strings stretched between the

approaching pair become tachyonic and condense, annihilating the branes.

warped throat

r
D3

D3

Ψ

bulk

Figure 1: D3-brane inflation in a warped throat geometry. The D3-branes are

spacetime-filling in four dimensions and therefore pointlike in the extra dimen-

sions. The circle stands for the base manifold X5 with angular coordinates Ψ.

The brane moves in the radial direction r. At rUV the throat attaches to a com-

pact Calabi-Yau space. Anti-D3-branes minimize their energy at the tip of the

throat, rIR.

In this simplified picture, inflation is driven by the extremely weak (warping-

suppressed) Coulomb interaction of the brane-antibrane pair (29). The true story,

however, is more complex, as moduli stabilization introduces new terms in the

inflaton potential which typically overwhelm the Coulomb term and drive more

complicated dynamics (29, 33, 34, 35, 36, 19). This pattern is precisely what we

anticipated in our effective field theory discussion: integrating out moduli fields

can be expected to induce important corrections to the potential.

3.2 The D3-brane Potential

An important correction induced by moduli stabilization is the inflaton mass term

arising from the supergravity F-term potential, §2.2.2. In a vacuum stabilized
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consider the effect of only one angular degree of freedom, although this formalism is

easily generalized.
We define the angle α as:

cos α =
φ̇√
2X

sin α =

√
Bθ̇√
2X

(5.1)

where
X ≡

1

2

(

φ̇2 + T3 gθθ θ̇2
)

≡
1

2

(

φ̇2 + Bθ̇2
)

. (5.2)

When θ̇ = 0, the angle α vanishes. We define the averaged trajectory field σ (see
2.18) and cf. [31]):

d σ = cos α dφ +
√

B sin α dθ , (5.3)

which is the geodesic length introduced in (2.18), and an orthogonal, entropy field s:

d s =
√

B cos α dθ − sin α dφ . (5.4)

This leads to the equalities

σ̇2 = 2X

ṡ = 0 (5.5)

in exact analogy to the flat multifield case.

The equations for φ and θ can be rewritten in these new variables

1

a3

d

dt

(

a3 γ σ̇
)

= −
∂V

∂σ
+

γ(γ−1 − 1)2

2f 2

∂f

∂σ
(5.6)

γ σ̇ α̇ = −
∂V

∂s
+

γ(γ−1 − 1)2

2f 2

∂f

∂s
+

γσ̇2

2B

∂B

∂s
(5.7)
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String theory and Inflation

String inflation and Observations

• In string theory, inflaton is a light scalar field, describing properties of

compact extra-dimensions

• String models of inflation can be put under good theoretical control.

• Eff
⇒ Dangerous light scalars stabilised with

. internal gauge fields and D-brane effects.

• Properties of CMB radiation provide precise information about

the dynamics of the inflationary process.

⇓

Future observations (Planck) can test string inflationary models

• D-Brane inflation:
Brane moves through a warped space [Kachru et al. ’03].

Evolution of cosmological fluctuations has specific properties

Inflaton Lagrangian has by non-canonical kinetic terms

– Multi-field models characterized by
correlations among perturbations,
and specific non-Gaussian features.

– Definite bounds on the amplitude of tensor fluctuations from inflation

– Non-canonical kinetic terms for the inflatons tend to enhance
non-Gaussian features of CMB spectrum. [Silverstein et al. ’04].

– In the multi-field case, non-standard correlations among fluctuations.

Sensitive to moduli stabilization mechanism via fluxes [Tasinato et al.].

2

6d compact manifold:
moduli stabilised by fluxes

Inflaton is the scalar field
associated with brane position

• Two different scenarios (generically multifield inflation):

✴ Slow roll inflation: flat potential required.  Standard predictions for single field 
case                                   . Multifield dynamics also arises.

Scalar potential generated due to anti-D3-brane at end of throat.

S ⊃

∫

d4x
√
−g4

[

M2
p

2
R + ∂φi∂φjgij + V (φi) + . . .

]

S ⊃

∫

d4x
√
−g4

[

M2
p

2
R + P (Xij , φi) + . . .

]

✴ DBI inflation: no flat potential is required. Inflaton Lagrangean charachterised 
by non-canonical kinetic terms.

D-Brane Inflation II

Calabi!Yau

D3

p!3

D3

y

4D

Warped Throat

Dp ! A D3-brane moves through the warped 
space towards anti-D3-brane at end of the 
throat. 

! Consider warped compactification: internal gauge fields introduced to 
stabilise additional scalar fields. [Giddings et al. ’01; Kachru et al. ‘03].

! Slow roll inflation can be organised 

M4 × h(yi)X6

S ⊃

∫

d4x
√
−g4

[

M2
p

2
R + ∂φ∂φ + V (φ) + . . .

]

CY3 unwarped 
compactification          

! Brane-antibrane 

[Zavala et al. ‘02]

D-Brane Inflation I
" Consider unwarped compactification. Assume all other moduli a part from 
inflaton are massive (stabilised by some mechanism)

" A pair of Dp-branes expanding the full M4 and wrapping (p-3) dimensions 
in the compact space X6.

" Potential is generated for generic angles 
between branes (          )

"  Open string modulus associated to      
D-brane position Y acts as the inflaton.      
⇒ Geometrical interpretation of inflaton   

M4 × X6

θ != 0

! Branes at angles

[Burgess et al.  ‘01]
DpD̄p (θ = π)

" Single field slow roll scenario: standard 
predictions 

!

Dp

CY3
p!3

Dp

Y

4D

ns ∼ 0.96 r " 1 |fNL| " 1

!Standard predictions for single field case. 

[Silverstein-Tong ‘04]
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DBI Inflation and its signatures
• D-brane motion in internal 6D space described by Dirac-Born-Infeld + Wess-
Zumino action ⇒ multifield cosmological evolution

S4 =

∫

d4x
√

−g

{

M2

Pl

2
R −

[

h−1

√

1 − h φ̇n φ̇m gmn − h−1 + V (φl)

]}

• Non-standard kinetic terms give rise to speed limit 
for D-brane motion in compact space 

[Easson-Gregory-Mota-
Tasinato-Zavala ‘07]

κ
2
10 = (2π)7g2

s
α
′4M2

Pl = V6/κ2

10

Warped Geometry

D3

• Combined with strong warping ⇒ accelerating 

h−1 > φ̇2

• DBI cosmological signatures:

c2

S = (1 − hφ̇2)
- Enough inflation requires brane to move close to speed of light: c

2

S ! 1

where 

- Small sound velocity implies large departures from Gaussian spectrum.      
  Quantified by non-negligible bispectrum 〈ζζζ〉 ∼ fNL〈ζζ〉2

−114 < fNL < 166 (68%cl 1σ) ⇒
fNL = −

1

3

(

1

c2

S

− 1

)

c
2

S 3 × 10
−3≿ 

- In Wilson line case also observable gravitational wave spectrum can be 
generated 0.16 0.24r ≾ ≾ [Avgoustidis-Zavala ‘09]

trajectories without requiring a flat potential 
(cf. slow roll) 



c

1/H

l

4D4D

• Topologically, a variety of defects may be produced at end 
of inflation: domain walls, cosmic strings, monopoles. 

• Cosmologically, only strings can form via Kibble 
mechanism in 4D: D-strings, F-strings, bound states.

• Dimensionless tension depends on type of string formed.  A spectrum 
of tensions for cosmic superstrings arises (cf. field theoretic strings ):
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Table 3.14: AMS Binary Relations.

! \lessdot " \gtrdot ! \doteqdot or \Doteq

" \leqslant # \geqslant $ \risingdotseq

% \eqslantless & \eqslantgtr ' \fallingdotseq

( \leqq ) \geqq * \eqcirc

≪ \lll or \llless ≫ \ggg or \gggtr - \circeq

. \lesssim / \gtrsim 0 \triangleq

1 \lessapprox 2 \gtrapprox 3 \bumpeq

≶ \lessgtr ≷ \gtrless 6 \Bumpeq

7 \lesseqgtr 8 \gtreqless ∼ \thicksim

9 \lesseqqgtr : \gtreqqless ≈ \thickapprox

; \preccurlyeq < \succcurlyeq % \approxeq

= \curlyeqprec > \curlyeqsucc ? \backsim

@ \precsim A \succsim B \backsimeq

& \precapprox ' \succapprox C \vDash

D \subseteqq E \supseteqq F \Vdash

G \Subset H \Supset I \Vvdash

! \sqsubset " \sqsupset ( \backepsilon

∴ \therefore ∵ \because ∝ \varpropto

) \shortmid * \shortparallel M \between

N \smallsmile O \smallfrown P \pitchfork

Q \vartriangleleft R \vartriangleright S \blacktriangleleft

T \trianglelefteq U \trianglerighteq V \blacktriangleright

Table 3.15: AMS Arrows.

WXX \dashleftarrow XXY \dashrightarrow Z \multimap

⇔ \leftleftarrows ⇒ \rightrightarrows ] \upuparrows

^ \leftrightarrows _ \rightleftarrows ` \downdownarrows

a \Lleftarrow b \Rrightarrow c \upharpoonleft

d \twoheadleftarrow e \twoheadrightarrow f \upharpoonright

g \leftarrowtail h \rightarrowtail i \downharpoonleft

j \leftrightharpoons k \rightleftharpoons l \downharpoonright

m \Lsh n \Rsh o \rightsquigarrow

p \looparrowleft q \looparrowright r \leftrightsquigarrow

+ \curvearrowleft , \curvearrowright

s \circlearrowleft t \circlearrowright

3.9 List of Mathematical Symbols 51

Table 3.14: AMS Binary Relations.

! \lessdot " \gtrdot ! \doteqdot or \Doteq

" \leqslant # \geqslant $ \risingdotseq

% \eqslantless & \eqslantgtr ' \fallingdotseq

( \leqq ) \geqq * \eqcirc

≪ \lll or \llless ≫ \ggg or \gggtr - \circeq

. \lesssim / \gtrsim 0 \triangleq

1 \lessapprox 2 \gtrapprox 3 \bumpeq

≶ \lessgtr ≷ \gtrless 6 \Bumpeq

7 \lesseqgtr 8 \gtreqless ∼ \thicksim

9 \lesseqqgtr : \gtreqqless ≈ \thickapprox

; \preccurlyeq < \succcurlyeq % \approxeq

= \curlyeqprec > \curlyeqsucc ? \backsim

@ \precsim A \succsim B \backsimeq

& \precapprox ' \succapprox C \vDash

D \subseteqq E \supseteqq F \Vdash

G \Subset H \Supset I \Vvdash

! \sqsubset " \sqsupset ( \backepsilon

∴ \therefore ∵ \because ∝ \varpropto

) \shortmid * \shortparallel M \between

N \smallsmile O \smallfrown P \pitchfork

Q \vartriangleleft R \vartriangleright S \blacktriangleleft

T \trianglelefteq U \trianglerighteq V \blacktriangleright

Table 3.15: AMS Arrows.

WXX \dashleftarrow XXY \dashrightarrow Z \multimap

⇔ \leftleftarrows ⇒ \rightrightarrows ] \upuparrows

^ \leftrightarrows _ \rightleftarrows ` \downdownarrows

a \Lleftarrow b \Rrightarrow c \upharpoonleft

d \twoheadleftarrow e \twoheadrightarrow f \upharpoonright

g \leftarrowtail h \rightarrowtail i \downharpoonleft

j \leftrightharpoons k \rightleftharpoons l \downharpoonright

m \Lsh n \Rsh o \rightsquigarrow

p \looparrowleft q \looparrowright r \leftrightsquigarrow

+ \curvearrowleft , \curvearrowright

s \circlearrowleft t \circlearrowright

Gµ 10
−6

10
−12

p-3

4D

Dp-Dp system

p-3

D-(p-2) brane

String in 4D

Cosmic superstring production at end of 
D-brane inflation

• A key side effect of D-brane inflation is 
the formation of cosmological defects form 
due to Dp/Dp annihilation.

• When Dp-Dp collide D(p-2)-branes 
form. 

Kibble 
Mechanism

[Tye et al. ‘02]



String theory in the Sky?

Cosmic strings can be detected via gravity, rather than particle physics:

• Gravitational waves. Distortions of spacetime. 

Gµ < 10
−7

Gµ < 10
−6CMB: Pulsars: 

!"#"$%%&""&'

Enhanced

LIGO

R. Adhikari

LISA

δ = 8πGµ

• Gravitational lensing. Requires appropriate 
alignment of source behind string. 

• Gravitational perturbations

Some candidates, no detection.

Gravitational wave bursts are produced by cusps, points 
at which the string reaches the speed of light. Possible 
detection at LISA, LIGO. 

End of D-brane inflation

• Cosmic superstring tension from D-brane inflaiton gives 
(           Newton constant x string tension): [Tye et al. ‘01]

• Possible detection via gravitational wave 
bursts (LIGO, VIRGO, LISA).

10
−11 < Gµ < 10

−6

Gµ =

• Gravitational wave bursts are produced by cusps, points at which the 
string reaches the speed of light.  Such cusps appear generically in 
string loops.

!"#"$%%&""&'

Enhanced

LIGO

R. Adhikari
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• Cusp beams out a strong pulse of gravitational radiation in a cone 
centered on the cusp.

•The resulting cusp wave form has a power low 
behaviour in frequency.

Gravitational Wave Signal (4D)

•The form and amplitude of cusp gravity wave bursts 
can be computed as a function of mass per unit length 
of the string. 

[Damour-Vilenkin (DV) ‘00-’05]

•If cosmic string arise form D-brane inflation, it moves in (4+n) dimensions

what is the effect of extra dimensions on the cusp wave form?

⇒



 Effects of extra dimensions in gravitational wave bursts (GWB)

[O’Callaghan-Chadburn-Geshnizjani-Gregory-Zavala ‘10]

✴ Extra dimensions reduce the probability of intercommutation 

3.9 List of Mathematical Symbols 51

Table 3.14: AMS Binary Relations.

! \lessdot " \gtrdot ! \doteqdot or \Doteq

" \leqslant # \geqslant $ \risingdotseq

% \eqslantless & \eqslantgtr ' \fallingdotseq

( \leqq ) \geqq * \eqcirc

≪ \lll or \llless ≫ \ggg or \gggtr - \circeq

. \lesssim / \gtrsim 0 \triangleq

1 \lessapprox 2 \gtrapprox 3 \bumpeq

≶ \lessgtr ≷ \gtrless 6 \Bumpeq

7 \lesseqgtr 8 \gtreqless ∼ \thicksim

9 \lesseqqgtr : \gtreqqless ≈ \thickapprox

; \preccurlyeq < \succcurlyeq % \approxeq

= \curlyeqprec > \curlyeqsucc ? \backsim

@ \precsim A \succsim B \backsimeq

& \precapprox ' \succapprox C \vDash

D \subseteqq E \supseteqq F \Vdash

G \Subset H \Supset I \Vvdash

! \sqsubset " \sqsupset ( \backepsilon

∴ \therefore ∵ \because ∝ \varpropto

) \shortmid * \shortparallel M \between

N \smallsmile O \smallfrown P \pitchfork

Q \vartriangleleft R \vartriangleright S \blacktriangleleft

T \trianglelefteq U \trianglerighteq V \blacktriangleright

Table 3.15: AMS Arrows.

WXX \dashleftarrow XXY \dashrightarrow Z \multimap

⇔ \leftleftarrows ⇒ \rightrightarrows ] \upuparrows

^ \leftrightarrows _ \rightleftarrows ` \downdownarrows

a \Lleftarrow b \Rrightarrow c \upharpoonleft

d \twoheadleftarrow e \twoheadrightarrow f \upharpoonright

g \leftarrowtail h \rightarrowtail i \downharpoonleft

j \leftrightharpoons k \rightleftharpoons l \downharpoonright

m \Lsh n \Rsh o \rightsquigarrow

p \looparrowleft q \looparrowright r \leftrightsquigarrow

+ \curvearrowleft , \curvearrowright

s \circlearrowleft t \circlearrowright

P 1 ⇒ improve signal [DV ‘05]

✴ But also the kinematics of strings is different: 



✴ Round off effect due to motion in extra dimension
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✴ Decrease cusp formation probability and thus 
gravitational wave background as compared to 4D 
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✴ But also the kinematics of strings is different: 

! Round off effect due to motion in extra dimension

 Effects of extra dimensions in gravitational wave bursts (GWB)

! Amplitude depends on number of extra dimensions

! Decrease cusp formation probability and thus gravitational  
    wave background as compared to 4D case

! Besides potential confirmation of  brane world scenario can help 
determine the number of extra dimensions!

[O’Callaghan-Chadburn-Geshnizjani-Gregory-Zavala ‘10]
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✴ Amplitude depends on number of extra dimensions



✴ String theory is very powerful guiding tool to investigate physics 
beyond standard models of Cosmology (ΛCDM) and particle physics.  

Summary

• Distinctive features from generic models with more than one field, 
such as non-Gaussianities, isocurvature perturbations, detectable 
tensor perturbations. 

• End of inflation.  Can give rise to detectable cosmic superstrings.

✴ D-brane Inflation Models. 

✴ Other stringy inflationary models:

• Closed string modulus plays role of the inflaton: modular inflation.

• No D-branes involved ☞ no cosmic superstrings!
• Slow roll inflation with one or more fields. 


