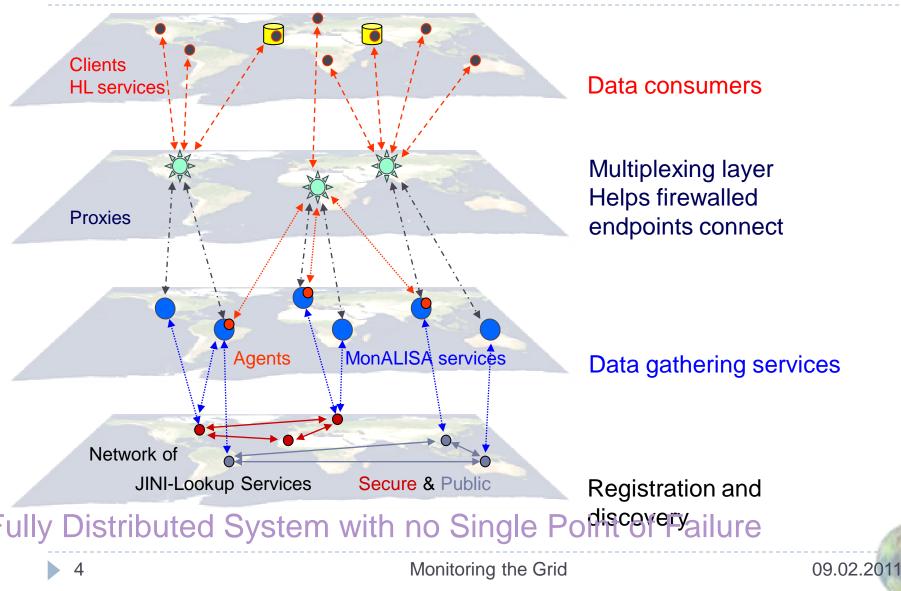
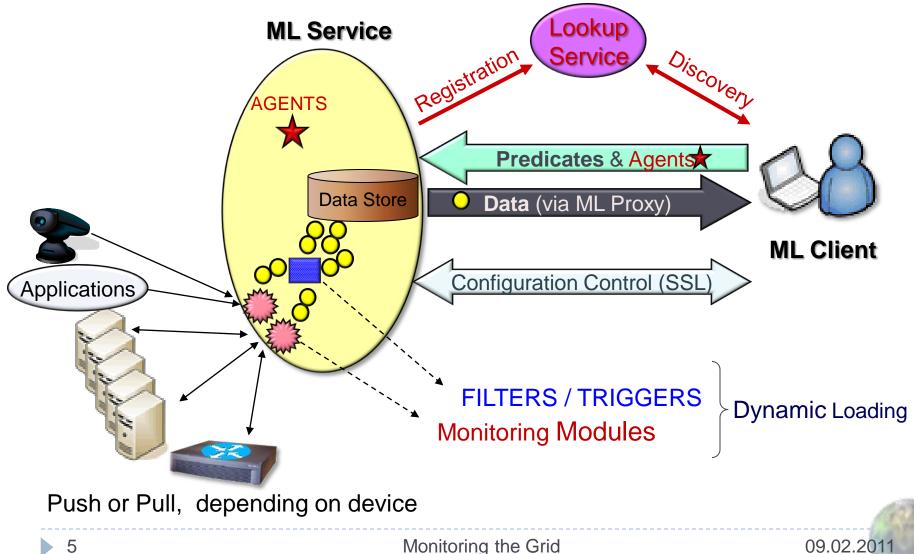
Monitoring the Grid

Costin Grigoras <costin.grigoras@cern.ch>

Challenge

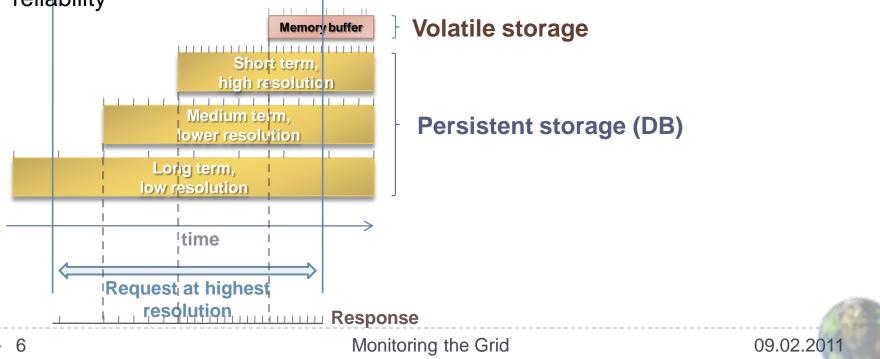

ALICE Grid means

- 80 Computing Elements on 5 continents
 - More than 35000 CPU cores
- 60 Storage Elements (8 tape-backed)
 - 12PB in use (72% is stored on tape SEs)
- 350 users active on Grid
- In the system of the system and optimize it
- For this we are using MonALISA


What is MonALISA ?

- Caltech project started in 2002 <u>http://monalisa.caltech.edu/</u>
- Java-based set of distributed, self-describing services
- Offers the infrastructure to collect any type of information
- All data can be processed in near real time
- The services can cooperate in performing the monitoring tasks
- Can act as a platform for running distributed user agents

MonALISA software components and the connections between them



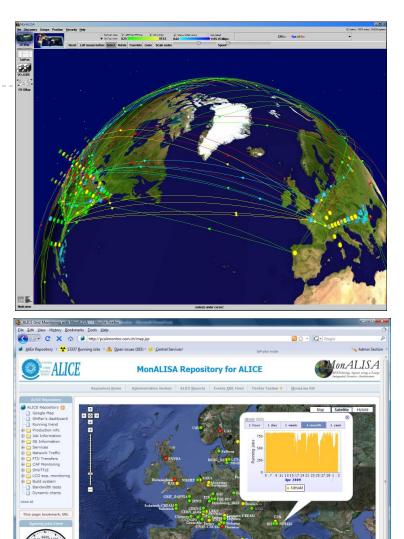
Subscriber/notification paradigm

Data storage model

- MonALISA keeps a memory buffer for a minimal monitoring history
- In addition, data can be kept in configurable database structures
- Default configuration is adapted to the different use cases
 - the service keeps one week of raw data and one month of averaged values
 - the repository creates three averaged structures (2mo @ 2m, 1y @ 30m, 10y @ 2.5h)
- Parallel database backends can be used to increase performance and reliability

Clients

GUI client


- Interactive exploring of all the parameters
- Can plot history or real-time values
- Customizable history query interval
- Subscribes to those particular series and updates the plots in real time

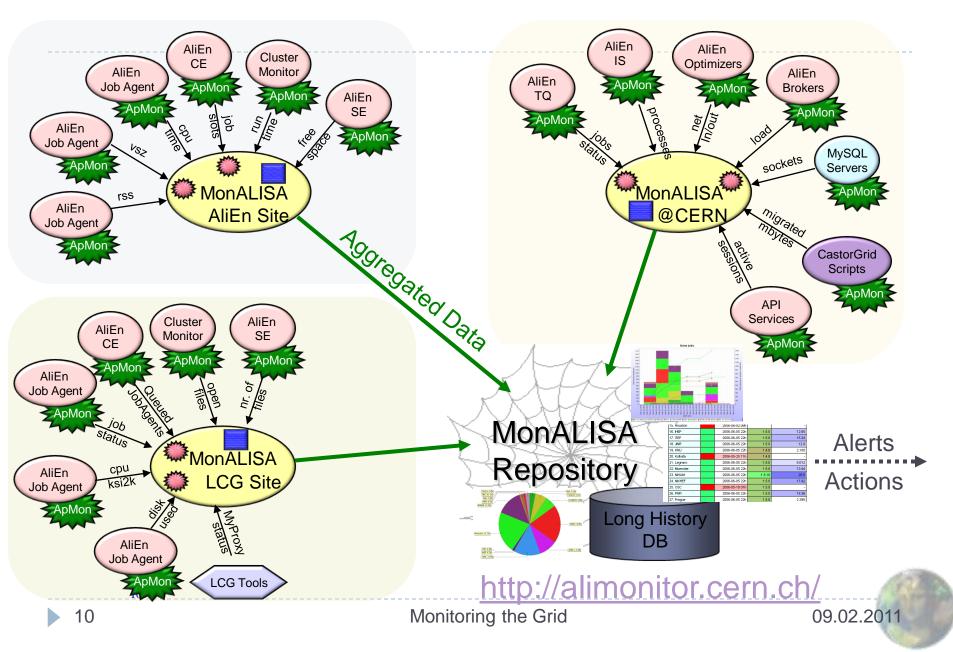
Storage client (aka Repository)

- Subscribes to a set of parameters and stores them in database structures suitable for long-term archival
- Is usually complemented by a web interface presenting these values
- Can also be embedded in another controlling application

WebServices & REST clients

 Limited functionality: they lack the subscription mechanism

MonALISA service includes many modules; easily extendable


- The service package includes:
 - Local host monitoring (CPU, memory, network traffic, processes and sockets in each state, LM sensors, IPMI, APC UPSs), log files tailing
 - SNMP generic & specific modules;
 - Condor, PBS, LSF and SGE (accounting & host monitoring), Ganglia
 - Ping, tracepath, traceroute, pathload, xrootd
 - Ciena, Optical switches (TL1); Netflow/Sflow (Force10)
 - Calling external applications/scripts that output the values as text
 - XDR-formatted UDP messages (ApMon)
- New modules can be added by implementing a simple Java interface.
- Filters can also be defined to aggregate data in new ways
- ▶ 8 The Service can also reaction to the monitoring data it receives 2011 through the action framework

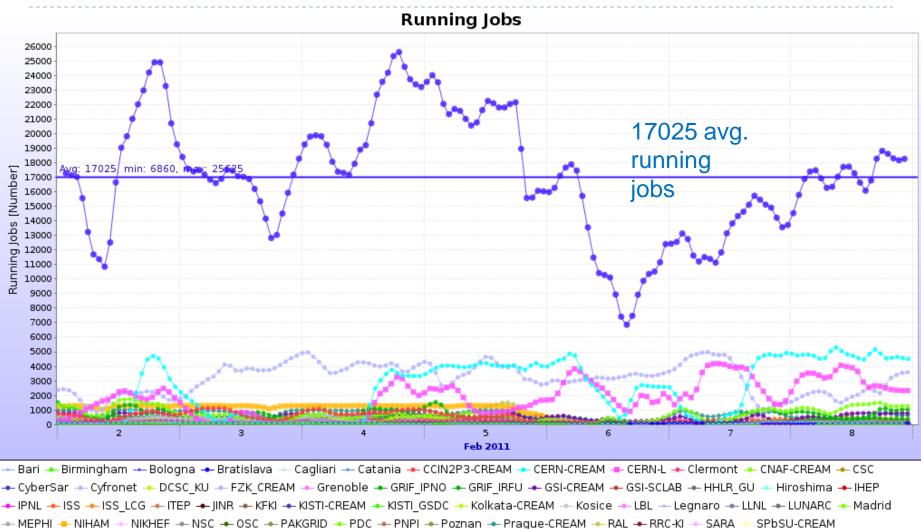
Embeddable APlication MONitoring library (ApMon)

- Lightweight library of APIs (C, C++, Java, Perl, Python) that can be used to send any information to MonALISA Service(s) over UDP
- Flexible configuration (hardcoded / configuration file / URL)
- Background system monitoring (optional)
 - Load, CPU, memory & swap usage
 - Network interfaces (in/out/ip/errs)
 - Sockets in each state, processes in each state
 - Disk IO, swap IO
- Background application monitoring (optional)
 - Used CPU & wall time, % of the machine CPU
 - Partition stats, size of workdir, open files
 - Memory usage (rss, virtual and %), page faults

Very high throughput (O(10K msg/s) on a regular machine)

AliEn monitoring architecture

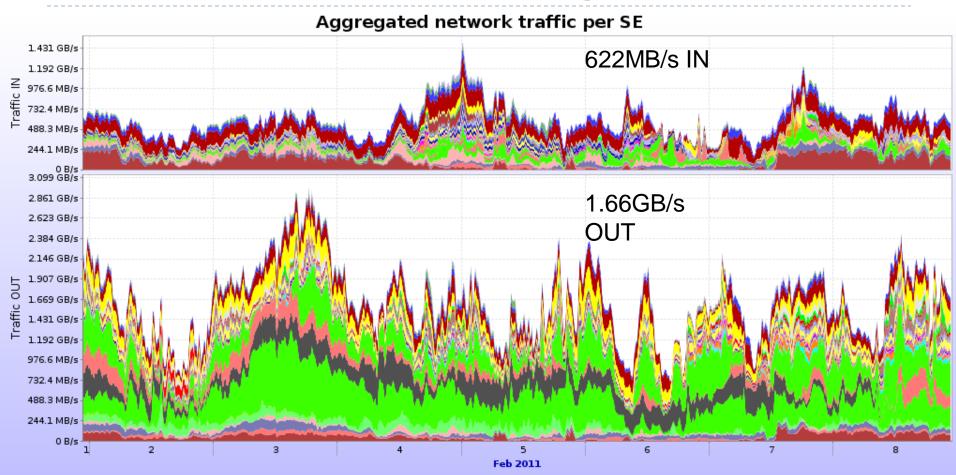
Monitoring statistics


- 116 active services (site + central services)
- > 2.6M published parameters @ 20.5KHz
- Central repository subscribes to only 150K parameters
 - Mostly aggregated values
 - Storing at 450Hz
 - 7-10K dynamic pages / hour
 - Average generation time is below 0.1s
 - 320GB database size (with the data compaction scheme shown before)
 - 5 years of history

Site monitoring

. . .

- The sites can collect the local monitoring information to keep more details
 - Full host monitoring history (ApMon, Ganglia, snmp)
 - Fabric monitoring (snmp to network equipment, UPSs)
 - Job accounting information for the site
 - Users that run jobs on the site, CPU time, memory profiles, IO
- Extending it with custom filters and alarms
- An example: GSI <u>http://lxgrid2.gsi.de:8080/</u>
- Network monitoring repository: <u>http://repository.uslhcnet.org/</u>


Last week activities

🔶 Strasbourg IRES 🔶 Subatech 🛶 Torino 🛶 Trieste 🛥 TriGrid 🛶 Troitsk 🛥 Trujillo 🛥 UiB 🛶 UNAM 🛶 Yerevan 💠 SUM

13

Xrootd servers monitoring

Bari::SE
 Bologna::SE
 Bratislava::SE
 Catania::SE
 CCIN2P3::SE
 CERN::SE
 CNAF::SE
 CNAF::TAPE
 CyberSar_Cagliari::SE
 Cyfronet::SE
 FZK::SE
 FZK::TAPE
 GLOBAL_REDIRECTOR::SE
 GRIF_IPNO::SE
 GSI::SE
 HHLR-GU::SE
 Hiroshima::SE
 IHEP::SE
 IPNL::SE
 ISS::FILE
 ITEP::SE
 JINR::SE
 KISTI:GSDC::SE
 KISTI_GSDC::Tape
 Kolkata::SE
 Kosice::SE
 LBL::Tape
 Legnaro::SE
 LLNL::SE
 Madrid::SE
 MAdrid::SE
 MAdrid::SE
 NIHAM::FILE
 OSC::SE
 PNPI::SE
 Troitsk::SE
 Trujillo::SE
 WUT::SE
 YERPHI::SE

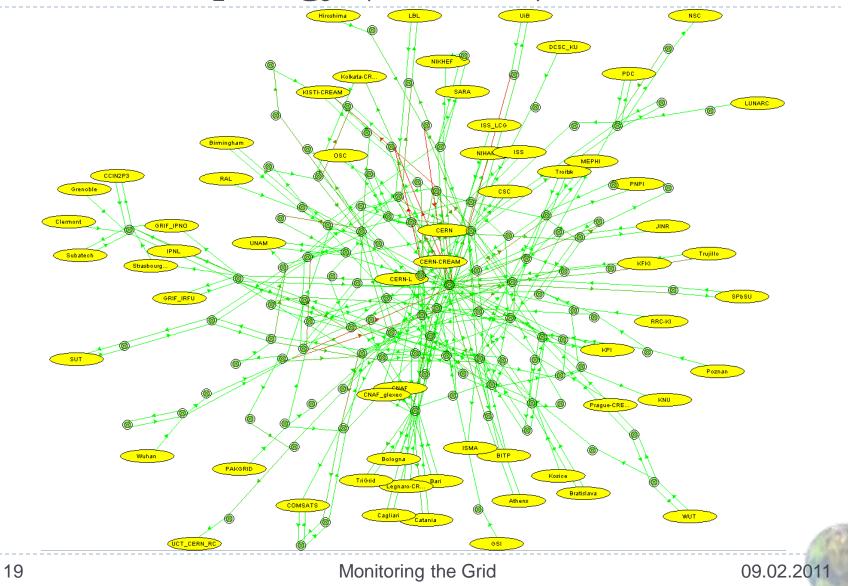
CERN Castor2 servers

Average job I/O activity over 1w

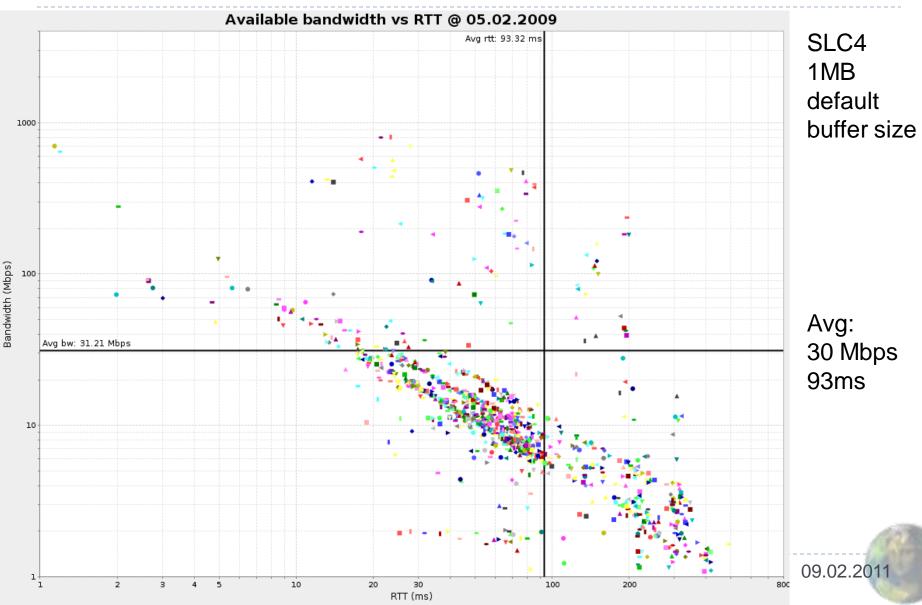
- 17025 average running jobs
- Xrootd: 1.66GB/s out, 622MB/s in
- Castor2: 995MB/s out, 235MB/s in
- So each job (worker node core) consumed about
 - 1.25 Mbps in
 - 0.4 Mbps out
- Not taking into account DPM and dCache storages
- With spikes of up to 3x this
- The jobs could process more if it would be available

A T1 example Aggregated network traffic per SE 195.3 MB/s Traffic IN 146.5 MB/s 97.66 MB/s 48.83 MB/s 0 B/s 10Gbps 1.192 GB/s 1.144 GB/s 5000 analysis 1.097 GB/s 1.049 GB/s jobs 1.001 GB/s 976.6 MB/s => 2Mbps/job 927.7 MB/s 878.9 MB/s 830.1 MB/s 781.3 MB/s 732.4 MB/s Traffic OUT 683.6 MB/s 634.8 MB/s 585.9 MB/s 537.1 MB/s 488.3 MB/s 439.5 MB/s 390.6 MB/s 341.8 MB/s 293 MB/s 244.1 MB/s 195.3 MB/s 146.5 MB/s 97.66 MB/s 48.83 MB/s 0 B/s 31 1 30 2 з 4 5 Feb 2011 Jan 2011 🔺 FZK::SE 🔺 FZK::TAPE

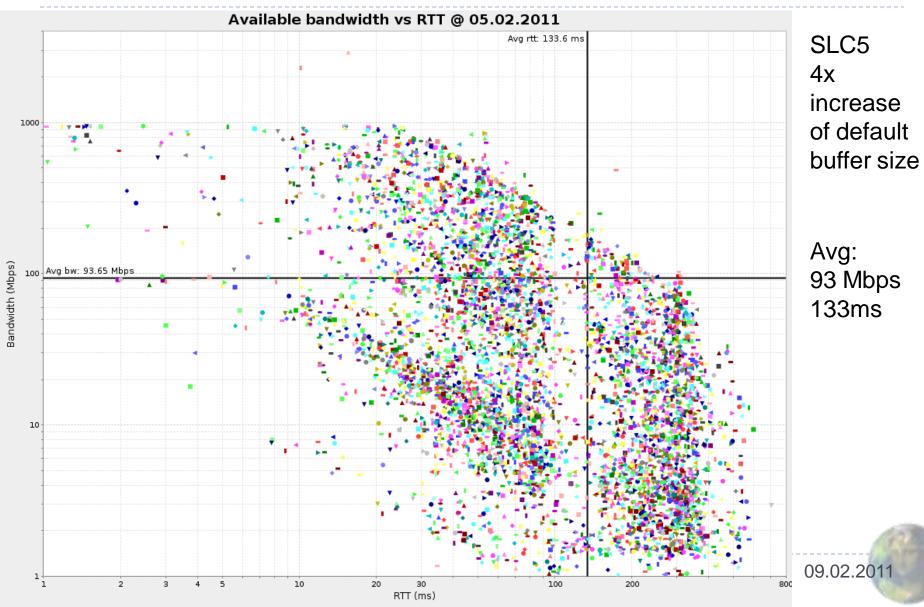
Monitoring the Grid

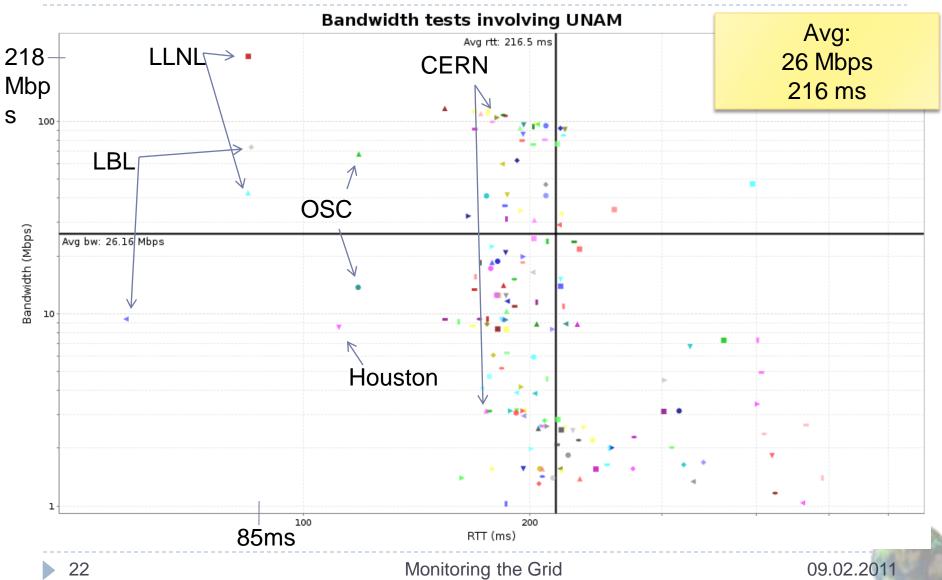

09.02.2011

Network topology discovery


- Site MonALISA services continuously perform traceroute between them and publish the results
- Central repository coordinates bandwidth tests between VoBoxes
- With each test the traceroute and machines' configuration is stored
- Together with other monitoring information (storage element functional test results, occupancy) a "closest SE" metric is computed for any client IP address
 - Jobs read/write from/to the closest working storage
 - Clients benefit from the same features

Network topology (AS level)


D


Available bw and buffer sizes

Available bw and buffer sizes

UNAM connectivity with the Grid

Firewall requirements (VoBoxes)

<UNAM>

Chart view »

			IN from						C	DUT to			
No.	ID	Site	Speed (Mbps)	Hops	RTT (ms)	Streams	No.	ID	Site	Speed (Mbps)	Hops	RTT (ms)	Streams
1.	737060	SARA	116.92	14	154.31	1	1.	735972	LLNL	218.12	14	84.58	1
2.	735359	LBL	81.84			1	2.	736713	SARA	122.82			1
з.	731451	CyberSar	75.89	18	202.25	1	з.	732975	CSC	114.56	13	176.23	1
4.	733253	GSI-CREAM	69.44			1	4.	733107	HHLR_GU	112.82	17	168.94	1
5.	735432	OSC	67.69	19	118.60	1	5.	734790	NSC	109.86	16	172.24	1
6.	736884	Bratislava	60.17	17	183.89	1	6.	735782	Subatech	107.98	20	184.50	1
7.	734816	IHEP	56.72			1	7.	737437	CNAF_glexec	107.05	17	185.71	1
8.	735079	Catania	47.01	19	210.14	1	8.	734109	GRIF_IPNO	106.78			1

- All columns on this page should be filled for your site
 - http://alimonitor.cern.ch/speed/
- Incoming <u>and</u> outgoing
 - TCP/1093 bandwidth estimation
 - ICMP
 - UDP/33434..33534 (traceroute/tracepath)

Machines' configuration

On the web interface the configuration for each test is displayed, along with tuning suggestions

(UNAM)	Source
IP	132.248.194.137
os	CentOS release 5.5 (Final)
Kernel	2.6.18-194.32.1.el5
TCP algo	bic
Write buffers	<u>131071</u> (4096 16384 4194304)
Suggestions	You should increase net.core.rmem max to the
suggestions	max value of the TCP buffer size (4194304)
suggestions	—
	—
	max value of the TCP buffer size (4194304)
< LLNL> IP	max value of the TCP buffer size (4194304) Target
<llnl></llnl>	max value of the TCP buffer size (4194304) Target 192.12.137.71 Red Hat Enterprise Linux Server release 5.5
<llnl> IP OS</llnl>	max value of the TCP buffer size (4194304) Target 192.12.137.71 Red Hat Enterprise Linux Server release 5.5 (Tikanga)
<llnl> IP OS Kernel</llnl>	max value of the TCP buffer size (4194304) Target 192.12.137.71 Red Hat Enterprise Linux Server release 5.5 (Tikanga) 2.6.18-96chaos

Machines' configuration

- Considering the large RTT the following values should be applied at UNAM too:
 - het.core.rmem_max = 8388608
 - het.core.wmem_max = 8388608
 - net.ipv4.tcp_rmem = 4096 87380 8388608
 - net.ipv4.tcp_wmem = 4096 65536 8388608
 - net.core.netdev_max_backlog = 250000
- All nodes should have this configuration
 - VoBox, storage servers, worker nodes …
- More information here:
 - http://monalisa.cern.ch/FDT/documentation_syssettings.h tml

Thank you for your attention!

http://alimonitor.cern.ch/speed/videos

How the available bandwidth and RTT evolved in time