Jet Study in Ultra-Relativistic Heavy-Ion Collisions

Eleazar Cuautle 1 , Rafael Díaz 2 , Isabel Domínguez 1 , Guy Paić 1 and Andreas Morsch 3

¹Instituto de Ciencias Nucleares, UNAM, México

²Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear, CEADEN, La Habana ³Physics Department, CERN, Ginebra, Suiza

Jet Study in Ultra-Relativistic Heavy-Ion Collisions- p.1/

Outline

- Jet production in ALICE
- Jet reconstruction algorithms
- Monte Carlo generation
- Di-Jets
- Conclusion and next work

Jet production in ALICE

ALICE will study the whole spectrum of jet production ranging from minijets, $E_{\rm T} > 2 \,{\rm GeV}$, to high- $E_{\rm T}$ jets of several hundred GeV.

- For $E_{\rm T} > 20 \,{\rm GeV}$, 17% of the produced jets are in the ALICE fiducial region $|\eta| < 0.5$.
- A fraction of 8.6% of the accepted jet events contain back-to-back di-jets defined as events having a second accepted jet with at least 90% of the minimum transverse energy required for the leading jet.

For $E_{\rm T} > 100 \,{\rm GeV}$, the single jet acceptance rises to 26% and the di-jet acceptance to 13,5%.

Jet reconstruction algorithms

- Cone algorithms form jets by associating together particles whose trajectories (*i.e.*, towers whose centers) lie within a circle of specific radius R in $\eta \times \phi$ space.
- Starting with a trial geometric center (or axis) for a cone in $\eta \times \phi$ space, the energy-weighted centroid is calculated including contributions from all particles within the cone.
- This new point in $\eta \times \phi$ is then used as the center for a new trial cone.
- As this calculation is iterated the cone center "flows" until a "stable" solution is found, *i.e.*, until the centroid of the energy depositions within the cone is aligned with the geometric axis of the cone.

Monte Carlo generation

Simulating hard processes in pp collisions using PYTHIA 6.214 (signal) and embedding them in the underlying event of the Pb–Pb collisions simulated using the HIJING v1.36 event generator (background).

PYTHIA

- 1. 100 000 events (only generated)
- 2. Center of mass energy: 5.5 TeV
- 3. η range: $|\eta| < 0.5$
- 4. p-p Jets
- 5. p_t hard:5-200 GeV/c

Azimuthal correlations

The back-to-back azimuthal correlations is written as $\Delta \Phi = \Phi_{E_{max}} - \Phi_{E_{min}}$ where max/min are the jets with maximum/minimum energy in the same event.

- For $R_c = 0.4$ exist fails jets reconstructed at $\Delta \Phi = 0.5$ and $\Delta \Phi = 5.5$ due to part of the energy of the jet is not inside the cone.
- This fails jets disappeared increasing the cone size to an a ideal case with $R_c = 1$ where all the energy of the jet is include in the cone.

Back-to-back di-jets

Back-to-back di-jets

With this cuts only a fraction of 11 % of the accepted jet events contain back-to-back di-jets.

Conclusion and next work

- Azimuthal distributions provide us information to define di-jets
 - With $2,8 < \Phi_{E_{max}} \Phi_{E_{min}} < 3,4$ and $\frac{E_{max} E_{min}}{E_m ax} < 0,2$ only real di-jets are accepted and there is enough statistic
- Jets Signal+Background