

Baryon to meson ratio from pp and Au+Au collisions

Eleazar Cuautle ICN-UNAM

January 30, 2007

Experiment: Proton/pion ratio at RHIC

200 GeV Au+Au, 0-5%

Antiproton/proton at 200 GeV and 14 TeV

 Pythia production mechanisms does not reproduce data.

✓ Different models produce differents behaviour.

✓High energy conduce to different shafe on the spectrum.

Results from pp at 14 TeV

✓ The energy seems to increase the pt distribution on B-J respect to Popcorn.

✓ The p/π give us a width band to production models. It is possible to see the difference in the experiment?

p/π ratio vs. multiplicity (pp at 14 TeV)

► Multiplicity increase with the energy, allowing to study the baryon/meson on this variable

Preliminary results show a width band for p/π as function of the multiplicity.

flow: β=0.43c

SUMMARY

We have studied different scenarios of production mechanisms of p,K, π ,A with Pythia 6.3, and HIJING: P/ π Has a p_t dependence.

The p/π and Λ/K ratios vs p_t , E, η and multiplicidad, indicate:

Different behaviuor among models, (there is a big discrepance).
The differences among models are sensitive to multiplicity, E and η.
p/π, and Λ?K. ratios has the same behaviour

RHIC data on Au+Au can be describe by HIJING plus radial flow for all centralities

PERSPECTTIVA

✓ Make reconstruction, identify particle and calculate the baryon/meson ratio at ALICE energies