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Abstract: TeV gamma-rays can result from the photo-de-excitation of PeV cosmic ray nuclei after their
parents have undergone photo-disintegration in an environment of ultraviolet photons. This process is
proposed as a candidate explanation of the recently discovered HESS source at the edge of Westerlund 2.
The UV background is provided by Lyman-alpha emission within the rich O and B stellar environment.
The HESS flux results if there is efficient acceleration at thesource of lower energy nuclei. The require-
ment that the Lorentz-boosted ultraviolet photons reach the Giant Dipole resonant energy (∼ 20 MeV)
implies a strong suppression of the gamma-ray spectrum compared to anE−2

γ behavior at energies be-
low about1 TeV. This suppression is not apparent in the lowest-energy Westerlund 2 datum, but will be
probed by the upcoming GLAST mission.

Two well-known mechanisms for generating TeV
γ-rays in astrophysical sources are the purely
electromagnetic (EM) synchrotron emission and
inverse Compton scattering, and the hadronic
(PION) one in whichγ-rays originate fromπ0 pro-
duction and decay. Very recently, we highlighted a
third dynamic which leads to TeVγ-rays: photo-
disintegration of high-energy nuclei, followed by
immediate photo-emission from the excited daugh-
ter nuclei [1]. For brevity, we label the photo-
nuclear processA + γ → A′∗ + X , followed by
A′∗ −→ A′ + γ-ray as “A∗”. Such a process may
be operative in massive star formation regions with
hot starlight. In this work we examine whether the
A∗-process could be the origin of the very ener-
geticγ-rays recently observed, with the High En-
ergy Stereoscopic System (HESS) of Atmospheric
Cherenkov Telescopes, from the young stellar clus-
ter Westerlund 2 [2].

RCW 49 is a luminous cloud of ionized hydrogen
located towards the outer edge of the Carina arm,
at a distanced ≈ 8 kpc [3]. Embedded in RCW 49

is the massive star formation region Westerlund 2,
hosting an extraordinary ensemble of hot OB stars;
presumably at least a dozen early-type O stars,
100 B stars, and the remarkable Wolf-Rayet binary
WR 20a [4]. For such a distance, the cluster core∼

5′ results in a physical extentR ∼ 6 pc. The total
mass of the stars within this region is found to be
≈ 4500 M⊙. The total wind luminosity of all these
O type stars has been estimated as∼ 5 × 1037 erg
s−1, and the stellar luminosity of known massive
stars isL = 2.15 × 1040 erg s−1 [5]. However,
radio emission from the prominent giant HII re-
gion RCW 49 requires a larger luminosity of ion-
izing UV photons [6]. Indeed observations us-
ing the Infrared Array Camera (IRAC) on board
the Spitzer Space Telescope indicate that the to-
tal number of young stellar objects in this region
is about 7000 [7]. Therefore, the above estimate
of the total stellar luminosity should be taken as a
lower bound.

In the vicinity of WR20a, a clear excess of very
high energyγ-rays was recently reported by the
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H.E.S.S. Collaboration [2]. The significance of the
excess is about9σ. Compared to the point spread
function of the instrument, the source (termed
HESS J1023–2013575) appears slightly extended,
corresponding to an intrinsic size of theγ-ray
source of about0.2◦; its center is slightly shifted
compared to WR 20a. As expected for an extended
source, theγ-ray flux is steady over time.

By repeating the discussion of Cygnus OB2 [8], in
what follows we obtain the expectedγ-ray produc-
tion through theA∗-process in Westerlund 2. To
compute the photo-disintegration rate of a highly
relativistic nucleus (with energyE = AEN =
γAmN , whereγ is the Lorentz factor) on starlight
per nucleon [9],

RA(EN ) =
c

λA
≈

π σ0 ǫ′0 Γ

4γ2

∫ ∞

ǫ′

0/2γ

dǫ

ǫ2
n(ǫ) ,

(1)
we must estimate the ambient photon distribution
with energy spectrumn(ǫ). In Eq. (1) we have ap-
proximated the Giant Dipole resonant cross section
by the single pole of the Narrow-Width Approxi-
mation,

σA(ǫ′) = π σ0
Γ

2
δ(ǫ′ − ǫ′0) . (2)

Here,ǫ′ is the photon energy in the rest frame of the
nucleus,σ0/A = 1.45× 10−27cm2, Γ = 8 MeV,
and ǫ′0 = 42.65A−0.21 (0.925A2.433) MeV, for
A > 4 (A ≤ 4). The ambient photon distribu-
tion originates in the thermal emission of the stars
in the core region of radiusR. The average density
in the regionR will reflect both the temperatures
TO andTB due to emission from O and B stars, re-
spectively, and the dilution resulting from inverse
square law considerations. Specifically, the photon
density is

n(ǫ) =
9

4

[

nO(ǫ)NOR2
O + nB(ǫ)NBR2

B

R2

]

, (3)

whereNO(B) is the number of O (B) stars ,RO(B)

is the O(B) star average radius, the factor 9/4
emerges when averaging the inverse square dis-
tance of an observer from uniformly distributed
sources in a regionR, and

nO(B)(ǫ) = (ǫ/π)2
[

eǫ/TO(B) − 1
]−1

, (4)

Figure 1: Photo-disintegration rates of56Fe and
28Si, on the Westerlund 2 starlight.

corresponding to a Bose-Einstein distribution with
temperatureTO(B).

In Fig. 1 we show the dependence on the Lorentz
factor ofR56 andR28 for the stellar ambiance de-
scribed above. We have taken for the O stars,
NO = 12, a surface temperatureTO = 40000 K,
and radiusRO = 19 R⊙; for the cooler B stars
we assignTB = 18000 K,NB = 100, and radius
RB = 8 R⊙.

The low energy cutoff onRA seen in Fig. 1 will
be mirrored in the resulting photon distribution.
The∼ E−2 energy behavior of the various nuclear
fluxes will not substantially affect this low energy
feature. The energy behavior for photons in the
0.5−10 TeV region of the HESS data is a complex
convolution of the energy distributions of the vari-
ous nuclei participating in the photo-disintegration,
with the rate factors appropriate to the eV photon
density for the various stellar populations.

Let us define the differential ratedRA/dE′
γ as

dRA

dE′
γ

=
1

2

∫ ∞

0

n(ǫ)

γ2ǫ2
dǫ

×

∫ 2γǫ

0

ǫ′
dσγA

dE′
γ

(ǫ′, E′

γ) dǫ′ , (5)

wheredσγA(ǫ′, E′
γ)/dE′

γ is the inclusive differ-
ential cross section for production ofγ-rays from
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disintegration andE′
γ is the energy of the emitted

photon(s) in the rest frame of the nucleus. As-
suming the same cosmic ray spectrum as above,
the emissivity (number/volume/steradian) ofγ-
rays coming from nuclei photo-emission is

Qdis
γ (Eγ) =

∑

A

∫

dnA

dEN
(EN ) dEN

×

∫

dRA

dE′
γ

dE′

γ

d cos θγ

2

× δ[Eγ − γE′

γ(1 + cos θγ)] , (6)

whereEγ is the energy of the emittedγ-ray in
the lab andθγ is theγ-ray angle with respect to
the direction of the excited nucleus. Assuming a
power law with spectral indexα for the nuclear
flux, and approximating theγ-ray spectrum as be-
ing monochromatic with energyE′

γA, the emissiv-
ity becomes [10]

Qdis
γ (Eγ) =

∑

A

nAmN

2E′
γA

∫

mN Eγ

2E′

γA

dEN

EN

× RA(EN )
dnA

dEN
(EN ) , (7)

wherenA is the meanγ-ray multiplicity for a nu-
cleus with atomic numberA. (Hereafter we take
nA = 2). The differential flux at the observer’s
site (assuming there is no absorption) is related to
to theγ-ray emissivity as

dFγ

dEγ
(Eγ) =

Vdis

4πd2
Qdis

γ (Eγ) , (8)

whereVdis is the volume of the source (disintegra-
tion) region andd is the distance to the observer.

In Fig. 2 we provide a sample of eyeball fits to the
gamma ray spectrum, as obtained following a di-
rect integration of Eq. (7). The fits are for inter-
esting choices of the spectral index (α) of the nu-
clei population and for the average energy of the
photon (in the nuclear rest frame) emitted during
photo-emission. It is apparent that the A* mech-
anism can provide reasonable agreement with the
data, except possibly for the lowest-energy datum.
This datum may require an alternate mechanism,
such as electron acceleration or a PION contribu-
tion [11].

The EM and PIONpp processes contrast with
the A∗-process in that for them there is either
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Figure 2: Sample eyeball fits to HESS Wester-
lund 2γ-ray spectrum for theA∗ model, with var-
ious values of the injection56Fe nuclei power in-
dexα and the average energyE′

γA of emitted de-
excitation photons.

no energy threshold (EM) or very small threshold
O(2mπ) (PION pp) in the lab, and so their result-
ing γ-ray spectra rise monotonically with decreas-
ing Eγ . In contrast, theA∗ spectrum is flat with
decreasingEγ below about a TeV, as is evident in
Fig. 2.

The conversion efficiency from cosmic-rays to
TeV γ-rays must be quite high in theA∗ model, as
with other models. We find that the ratio of power
in the nuclei flux to that in the O-star winds is

PA

PO wind
= eff ×

(

R

6 pc

)2 (

d

8 kpc

)2

×

(

40

NO

)2 (

τage

τcont

)

(9)

whereeff is an efficiency which depends on model
parameters,τage ∼ 2 Myr is the age of the star-
forming region [5], andτcont is the containment
time of the nuclei in the ambient magnetic field.
For the four parameter sets(α, E′

γA/MeV) listed
in Fig. 2, we find for the (2.0, 1.5), (2.0, 1.0),
(1.6, 0.3) and (2.0, 0.3) models, the respective
efficiency values ofeff = 4%, 8%, 20%, and 80%.

In summary, we have shown that the observed TeV
γ-rays from Westerlund 2 can be explained by the
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A∗ model, wherein the TeVγ-rays are the Lorentz-
boosted MeVγ-rays emitted on the de-excitation
of daughter nuclei, themselves produced in colli-
sions of PeV nuclei with a hot ultraviolet photon
background. There is a specific prediction of a sup-
pression of theγ-ray spectrum in the region be-
low 1 TeV – this because of the need to achieve
Giant Dipole Resonance excitation through colli-
sion with∼ few eV photons. This suppression is
not apparent in the lowest-energy Westerlund 2 da-
tum, but will be probed by the upcoming GLAST
mission [12]: The flux predicted at∼ 100 GeV
from anE−2.53

γ extrapolation of the HESS data [2]
would render the source spectacularly visible in the
GLAST observation, whereas theA∗-model pre-
dicts a suppression by a factor of more than 2 or-
ders of magnitude relative to this extrapolated flux.

We have also calculated the energy requirements
for the proposed mechanism by integrating over
the nuclei energy density. We have found that, in
order to fall within the estimated kinetic energy
budget of the O stars, the containment time needs
to be large (ofO(105yr)), so that the wind power
integrates in time to a sufficiently large energy.
It should be noted that WR 20a may by itself
contribute several times the wind energy of the
O stars, thereby lowering our effeciency factor by
a comparable amount.
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