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Abstract: We present both numerical and semi-analytical results on test-particle acceleration in multiple
parallel shocks. We apply a kinetic Monte Carlo code and an eigenfunction expansion method to calculate
the distribution functions for electron populations accelerated in subsequent parallel shocks with speeds
ranging from non- to fully-relativistic. We examine the levels of particle anisotropy at the shocks and
discuss the implications for AGN and microquasar jets.

Introduction

Fermi acceleration at multiple non-relativistic
shocks has been dealt with in detail by [1] and
[2]. However, many objects that are likely to con-
tain multiple shocks are relativistic, e.g., the jets
of active galactic nuclei (AGNi), [3] the internal
shock models of microquasars [4] and both the in-
ternal shock and reverse shock models of gamma
ray bursts. [5,6] While the external shocks in these
sources are inevitably strong, internal shocks can
be weak, [4,5] either due to hydrodynamicpressure
in parallel shocks or magnetohydrodynamic pres-
sure in perpendicular shocks. Strong relativistic
shocks are known to be capable of producing hard
particle spectra withN(E) ∝ E−2.2 via the first-
order Fermi mechanism. On the other hand the
first-order mechanism produces much softer spec-
tra with weak shocks. [7] However, in the case of
a pre-existing hard power law population of parti-
cles then either inclusion of the shock drift mech-
anism [8] or small-angle diffusion [9] leads to an
amplification of this power law far above that ex-
pected from purely adiabatic compression.

In this paper we consider hard power law spectra,

N(E) ∝ E−σ,

created at a strong shock by the first-order acceler-
ation mechanism, which are swept up by a weak
shock. There is a number of physical scenarios
in which this is possible; one such possibility is
in microquasars and the parsec-scale jets of AGNi

where electrons accelerated at an external shock
are advected downstream of it towards the follow-
ing internal shocks. Another scenario is the colli-
sion of two expanding shells of plasma where the
weak reverse shock of the first shell sweeps up the
high energy electrons produced by strong forward
shock of the second shell.

In this paper we restrict ourselves to mildly rela-
tivistic external shocks, applicable to most AGNi
and microquasars. However, the internal shocks
of these sources can still have high Lorentz factors
due to outbursts of the central engine.

Methods

The semi-analytic eigenfunction approach is based
on solving the steady-state particle transport equa-
tion for the phase space distribution function:

Γ(u + µ)
∂f

∂z
=

∂

∂µ
Dµµ

∂f

∂µ
,

where u is the bulk flow speed in the shock
rest frame,Γ = (1 − u2)−1/2, µ is the pitch-
angle andDµµ is the pitch-angle diffusion coef-
ficient. This equation holds separately upstream
and downstream of the shock, and boundary con-
ditions are required to find the full solution. One
condition is that the distributions match at the
shock front, i.e.,f−(p−, µ−, 0) = f+(p+, µ+, 0),
where the plus/minus sign denotes quantities up-
stream/downstream of the shock. We also require
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Prof vsh1 vdo1 r1 vsh2 vdo2

A .3000 .2293 3.95 .7290 .61933
B .7070 .5965 3.70 .9770 .95731
C .9500 .9105 3.25 .9989 .99783
D .9800 .9619 3.10 .9997 .99934

Table 1:The sets used. The speed for the both shocks,
vsh1 andvsh2, and the corresponding downstream flow
speeds,vdo1 andvdo2, and the compression ratio of the
first shocks,r1, are given in the far upstream rest frame
(observer’s frame); all calculations and simulations are
carried out in the relevant shock rest frames. Compres-
sion ratio of the second shock is 3 in all cases.

the distribution to be bounded infinitely far down-
stream. The distribution must be given far up-
stream and it is zero when only injection at the
shock is considered. We can expandf as

f(p, µ, z) =
∞∑

i=−∞

ai(p)Qi(µ) exp (Λiz/Γ)

where (Qi(µ), Λi) are eigenfunction–eigenvalue
pairs satisfying

d

dµ
Dµµ

dQi

dµ
= Λi(u + µ)Qi.

If the far upstream distribution isg(p−), then the
boundary conditions imply

g(p−)+
∑

i>0
a−

i
(p−)Q−

i
(µ−)=

∑
i≤0

a+

i
(p+)Q+

i
(µ+).

If the far upstream distribution follows a power law
with indexs1, i.e.,g(p−) = A0p

−s1

− , we can find
solutions witha±i (p±) = a±i p−s1

± by multiplying
the matching condition byQ+

j (u+ +µ+) and inte-
grating overµ+ for j > 0. The same applies also
if we one considers only monoenergetic injection
at the shock. In this case, letting

Wi,j =

∫ 1

−1

(1 + urelµ−)
s1 (u+ + µ+)×

Q+
j (µ+)Q−j (µ−) dµ+,

s1 is found by the conditiondetW = 0 as in [7].

We also used a kinetic Monte Carlo test-particle
simulation1 for comparison. We injected particles
in the upstream of a one-dimensional step shock,
and followed them under the guiding-centre ap-
proximation until they reach a pre-defined escape
boundary. This boundary was set sufficiently far
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−v

−v

sh1

do1

sh2

do2

Figure 1:Simple model of the flow profile considered
in this paper. The shocks are far enough apart that parti-
cles once a particle crossed the second shock it can never
return to the first shock.

away in the downstream to make sure the particles
have reached isotropy in the downstream plasma
frame. When a particle crossed the boundary, it
was either “absorbed to the downstream”, i.e., re-
moved from the simulation, or mirrored mimick-
ing the case of the particle recrossing the shock af-
ter returning from far downstream. This was done
with the help of the probability of return (see, e.g.,
[10]). Also particle splitting was used to improve
statistics: when a particle reached certain energy,
it was replaced by two “daughter particles”, which
were otherwise identical to their “mother”, but had
only half of the original statistical weight.

In the simulation particles were scattered at the
end of each Monte Carlo time-step. The small-
angle scatterings are elastic in the rest frame of
the scattering centres, which are taken to be mov-
ing with the local flow speed, so the energy re-
mains unchanged over a scattering in the local flow
frame. Energy losses were omitted in these simula-
tions to allow for better comparison with the semi-
analytical results.

For the first shock the injected particles have a
small initial energy and random direction. For the
second shock we inject the particles accelerated in
the first shock. The particle properties were mea-
sured in the local plasma frame, so the downstream
properties for the first shock simply become up-
stream properties for the second. However, the the
shocks in each case (see Table 1) were simulated
separately, so for example particles escaping up-
stream from the second shock cannot travel back
to the first shock.

1. www.iki.fi/joni.tammi/qshock
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Figure 2:Simulated energy spectra (multiplied byE2)
downstream of the first shocks for the profiles given in
Table 1. Spectra have been shifted vertically to allow for
better comparison. Solid lines give slopes obtained from
the eigenfunction method.

Figure 3: Distribution of power-law tail particles at
both D-profile shocks as measured in the upstream rest
frame.

Results and Discussion

As outlined in the introduction the process we are
interested in the process where a power-law dis-
tribution, pre-created at a strong shock, is being
swept and further accelerated by a weak shock. We
consider four different velocity profiles (see Fig-
ure 1 and Table 1), for which the compression ra-
tio of the first shock is calculated from the hydro-
dynamical jump conditions for a plasma satisfying
the Jüttner-Synge equation of state. The compres-
sion ratio of the second shock is 3 in all cases.

Energy spectra and pitch-angle distributions were
obtained using both the eigenfunction method and

Figure 4:Particle spectra before (dashed line) and after
the second shock (solid line), as measured in the local
plasma frame, for the C case. The dotted line shows the
slope obtained from the eigenfunction method.

particle simulations, and there is good agreement
between the two methods. Figure 2 shows the en-
ergy spectra a few scattering lengths downstream
of the first shock for all profiles together with the
semi-analytically obtained spectral slopes. While
the pitch-angle distribution is isotropic at this dis-
tance downstream, it can be highly anisotropic at
the shock front.2 This can be seen in Figure 3,
showing the pitch-angle distribution at the both
shocks for profile D, as measured in the corre-
sponding upstream rest frame.

The spectral index doesn’t change at the second
shock crossing due to the fact the the “natural spec-
tral index” of such a weak shock is greater than
the index for the injected spectra. The power-law
is shifted due to the Lorentz transformation across
the shock, and additionally due to the further accel-
eration by the first-order process. The compression
of the plasma at the shock crossing doesn’t affect
the plain energy spectrum, but needs to be taken
into account when comparing the distribution func-
tions. In addition to compression and the change
of frames across the shock, the shock acceleration
mechanism can lead to significant additional am-
plification. Example is shown in Fig. 4, where the
number of the power-law particles at a given en-
ergy (in the local plasma frame) is increased by the

2. This poses difficulties for comparing theµ distribu-
tion in the upstream, as for a relativistic shock (cf. case
D) one would need to simulate of the order of10

90 cross-
ings to get one crossing withµ = +1 due to the extreme
anisotropy. For this reason, the data for simulated parti-
cles does not extend far fromµ′

= −1 in this frame.
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Figure 5: Amplification of spectrum as a function of
shock proper speed. See text for details.

factor of 17.4 (case C), and general behaviour of
the amplification with respect to the shock speed is
drawn for an example case (spectral indexσ = 2
and compression ratior = 3) in Fig. 5.

The peak nearµ = +1 in the particle pitch-angle
distribution at the shock measured in the down-
stream rest frame is due to particles that cross
the shock and never return. For the first shock
these particles are not considered as they are not in
the power-law part of the spectrum; in the second
shock, however, these are well beyond the thermal
population and thus may have some signifigance
e.g. in radiation modelling, as the highest-energy
particles can radiate their energy away before they
have had time to isotropise in the downstream of
the second shock. As expected, Figure 6 shows
that this proportion increases as the shock becomes
relativistic.

The eigenfunction method and test-particle simu-
lations broadly agree on the level of amplification.
However, the eigenfunction method has no cut-offs
in particle energy due to assumptions about energy
losses. The simulations show that as well as an
amplification in the magnitude of the power law
part of the distribution, the power law extends to a
higher cut-off energy. This will result in a higher
peak energy in the synchrotron spectra behind the
shock than what exists ahead of the second shock.

While this paper restricts itself to weak subsequent
shocks, future work will use both presented meth-
ods to examine re-accleration at strong shocks in
order to produce results comparible to [1] and [2]
in the relativistic limit.

Figure 6: Pitch-angle distribution, as measured in the
downstream frame, of the particles for cases A (solid
line), B, (dashed) and D (dotted) for the second shock.

In addition to energy losses due to, e.g., syn-
chrotron emission or adiabatic expansion, the cur-
rent study omits possible effects due to turbu-
lence transmission (see Tammi, elsewhere in this
volume), second-order acceleration between the
shocks [11], as well as injection of new low-energy
particles into the second shock.
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