

FLRW and Diffusion of Charged Particles	
Introduction	
Field Line Random Walk (FLRW)	
Analytical results for the slab/2D composite model	
Perpendicular scattering of charged particles	
Generalized Compound Diffusion (GCD)	
Comparison with observations	
Summary and Conclusion	

Nonlinear Field Line Random Walk and Generalized Compound Diffusion of Charged Particles

Andreas Shalchi & Ioannis Kourakis

Theoretische Physik IV Ruhr-Universität Bochum Germany

FLRW and Diffusion of Charged Particles

(人間) (人) (人) (人) (人) (人)

Introduction

Field Line Random Walk (FLRW)

Analytical results for the slab/2D composite model

Perpendicular scattering of charged particles

Generalized Compound Diffusion (GCD)

Comparison with observations

Summary and Conclusion

Content:

• INTRODUCTION

- P A R T I: wandering of magnetic field lines (FLRW=Field Line Random Walk)
- P A R T II: Generalized Compound Diffusion (GCD) (perpendicular scattering of cosmic rays)

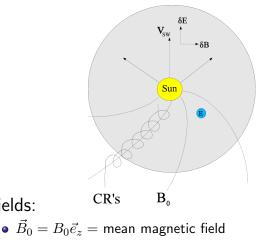
• SUMMARY

Introduction

Field Line Random Walk (FLRW)

Analytical results for the slab/2D composite model

Perpendicular scattering of charged particles


Generalized Compound Diffusion (GCD)

Comparison with observations

Summary and Conclusion

RUHR-UNIVERSITÄT BOCHUM

Introduction

• $\delta \vec{E}$, $\delta \vec{B}$ = turbulent fields

Fields:

A. Shalchi & I. Kourakis

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

FLRW and Diffusion of Charged Particles

Introduction

Field Line Random Walk (FLRW)

Analytical results for the slab/2D composite model

Perpendicular scattering of charged particles

Generalized Compound Diffusion (G<u>CD)</u>

Comparison with observations

Summary and Conclusion

Model for the turbulence correlation tensor:

$$P_{xx}(\vec{k},t) = <\delta B_x(\vec{k},t)\delta B_x^*(\vec{k},0)>$$

Magnetostatic turbulence: P_{xx}(k, t) = P_{xx}(k)
Slab/2D composite geometry:

$$P_{xx}(\vec{k}) = P_{xx}^{slab}(\vec{k}) + P_{xx}^{2D}(\vec{k})$$

with

$$P_{xx}^{slab}(\vec{k}) = g^{slab}(k_{\parallel}) \frac{\delta(k_{\perp})}{k_{\perp}}$$

and

$$P^{2D}_{xx}(\vec{k}) = g^{2D}(k_{\perp}) \frac{\delta(k_{\parallel})}{k_{\perp}} \frac{k_y^2}{k_{\perp}^2}$$

FLRW and Diffusion of Charged Particles

Introduction

Field Line Random Walk (FLRW)

Analytical results for the slab/2D composite model

Perpendicular scattering of charged particles

Generalized Compound Diffusion (GCD)

Comparison with observations

Summary and Conclusion

• Standard form of the wave spectrum:

$$g^{slab}(k_{\parallel}) = \frac{C(\nu)}{2\pi} l_{slab} \delta B_{slab}^2 \left(1 + k_{\parallel}^2 l_{slab}^2\right)^{-\nu}$$

and

$$g^{2D}(k_{\perp}) = \frac{2C(\nu)}{\pi} l_{2D} \delta B_{2D}^2 \left(1 + k_{\perp}^2 l_{2D}^2\right)^{-\nu}$$

with:

the normalization constant $C(\nu)$, the bendover scales l_{slab} and l_{2D} , the strength of the turbulent fields δB_{slab} and δB_{2D} , and the inertial range spectral index 2ν ;

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction

Field Line Random Walk (FLRW)

Analytical results for the slab/2D composite model

Perpendicular scattering of charged particles

Generalized Compound Diffusion (GCD)

Comparison with observations

Summary and Conclusion

Field Line Random Walk (FLRW)

Field line equation (for $\delta B_z \ll B_0$):

$$dx = \frac{\delta B_x(\vec{x}(z))}{B_0} dz$$

Field line MSD (Mean Square Deviation)

$$\left\langle (\Delta x(z))^2 \right\rangle = \frac{1}{B_0^2} Re \int_0^z dz' \int_0^z dz'' R_{xx}(z', z'')$$

with

$$R_{xx}(z',z'') = \left\langle \delta B_x(\vec{x}(z')) \delta B_x^*(\vec{x}(z'')) \right\rangle$$

A. Shalchi & I. Kourakis

FLRW and Diffusion of Charged Particles

<ロ> <同> <同> < 同> < 同>

FLRW and Diffusion of Charged Particles

Introduction

Field Line Random Walk (FLRW)

Analytical results for the slab/2D composite model

Perpendicular scattering of charged particles

Generalized Compound Diffusion (GCD)

Comparison with observations

Summary and Conclusion

To proceed:

- we replace the turbulent fields by a Fourier transformation
- we assume homogeneous and axisymmetric turbulence
- we assume a Gaussian statistics of the field lines
- we employ Corrsin's independence hypothesis:

$$\left\langle \delta B_x(\vec{k}) \delta B_x^*(\vec{k}) e^{i\vec{k}\cdot\Delta\vec{x}(z)} \right\rangle$$
$$= \left\langle \delta B_x(\vec{k}) \delta B_x^*(\vec{k}) \right\rangle \left\langle e^{i\vec{k}\cdot\Delta\vec{x}(z)} \right\rangle$$

FLRW and Diffusion of Charged Particles

- 4 同 6 4 日 6 4 日 6

to get

FLRW and Diffusion of Charged Particles

Introduction

Field Line Random Walk (FLRW)

Analytical results for the slab/2D composite model

Perpendicular scattering of charged particles

Generalized Compound Diffusion (GCD)

Comparison with observations

Summary and Conclusion

 $\left\langle (\Delta x(z))^2 \right\rangle = \frac{2}{B_0^2} \int d^3k \ P_{xx}(\vec{k})$ $\times \quad \int_0^z dz' \ (z-z') \cos(k_{\parallel} z') e^{-\frac{1}{2} \left\langle (\Delta x(z'))^2 \right\rangle k_{\perp}^2}.$

By applying the operator d^2/dz^2 we get an ODE

$$\frac{d^2}{dz^2} \left\langle (\Delta x(z))^2 \right\rangle = \frac{2}{B_0^2} \int d^3k \ P_{xx}(\vec{k}) \\ \times \cos(k_{\parallel}z) e^{-\frac{1}{2} \left\langle (\Delta x(z))^2 \right\rangle k_{\perp}^2}.$$

A. Shalchi & I. Kourakis

FLRW and Diffusion of Charged Particles

Introduction

Field Line Random Walk (FLRW)

Analytical results for the slab/2D composite model

Perpendicular scattering of charged particles

Generalized Compound Diffusion (GCD)

Comparison with observations

Summary and Conclusion

Analytical results for the slab/2D composite model

• For pure slab geometry we have:

$$\left\langle \left(\Delta x(z)\right)^2 \right\rangle = 2\kappa_{FL}|z|$$

 \Rightarrow (Markovian-)Diffusion of field lines

• For slab/2D composite geometry we find:

$$\left\langle (\Delta x)^2 \right\rangle = \left[9C(\nu) \sqrt{\frac{\pi}{2}} l_{2D} \frac{\delta B_{2D}^2}{B_0^2} \right]^{2/3} |z|^{4/3}$$

 \Rightarrow Superdiffusion of field lines

A. Shalchi & I. Kourakis

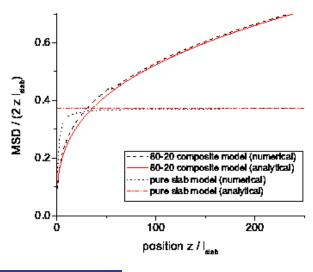
FLRW and Diffusion of Charged Particles

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Numerical investigation:

Introduction

Field Line Random Walk (FLRW)


Analytical results for the slab/2D composite model

Perpendicular scattering of charged particles

Generalized Compound Diffusion (GCD)

Comparison with observations

Summary and Conclusion

A. Shalchi & I. Kourakis

Ruhr-Universität Bochum

FLRW and Diffusion of Charged Particles

Introduction

Field Line Random Walk (FLRW)

Analytical results for the slab/2D composite model

Perpendicular scattering of charged particles

Generalized Compound Diffusion (GCD)

Comparison with observations

Summary and Conclusion

Perpendicular scattering of charged particles

Previous approaches:

- Quasilinear theory of particle transport (Jokipii 1966)
- Nonlinear closure approximation (Owens 1974)
- The Bieber and Matthaeus model (BAM, Bieber & Matthaeus 1997)
- The compound transport model (Kota & Jokipii 2000)
- The nonlinear guiding center theory (NLGC-theory, Matthaeus et al. 2003)
- The weakly nonlinear theory (WNLT, Shalchi et al. 2004)
- The extended NLGC-theory (ENLGC-theory, Shalchi 2006)

- 4 同 6 4 日 6 4 日 6

FLRW and Diffusion of Charged Particles

Introduction

Field Line Random Walk (FLRW)

Analytical results for the slab/2D composite model

Perpendicular scattering of charged particles

Generalized Compound Diffusion (GCD)

Comparison with observations

Summary and Conclusion

Test-particle simulations (e.g. Qin et al. 2002a,b): • Slab geometry:

 $\left\langle (\Delta x)^2 \right\rangle_P \sim \sqrt{t}$

\Rightarrow subdiffusion

• Slab/2D composite geometry:

$$\left< (\Delta x)^2 \right>_P \sim t$$

 \Rightarrow recovery of diffusion?

FLRW and Diffusion of Charged Particles

(1)

Introduction

Field Line Random Walk (FLRW)

Analytical results for the slab/2D composite model

Perpendicular scattering of charged particles

Generalized Compound Diffusion (GCD)

Comparison with observations

A. Shalchi & I. Kourakis

Summary and Conclusion

Generalized Compound Diffusion (GCD)

Guiding center approximation

 $\langle (\Delta x)^2 \rangle_P(t) \approx \langle (\Delta x)^2 \rangle_{FI}(z(t))$

and thus

$$\left\langle (\Delta x)^2 \right\rangle_P(t) = \int_{-\infty}^{+\infty} dz \left\langle (\Delta x)^2 \right\rangle_{FL}(z) f_P(z,t)$$

For $f_P(z,t)$ we assume a Gaussian particle distribution:

$$f_P(z,t) = \frac{1}{\sqrt{2\pi \langle (\Delta z)^2 \rangle_P}} e^{-\frac{z^2}{2 \langle (\Delta z(t))^2 \rangle_P}}$$

Ruhr-Universität Bochum

FLRW and Diffusion of Charged Particles

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

FLRW and Diffusion of Charged Particles

Introduction

Field Line Random Walk (FLRW)

Analytical results for the slab/2D composite model

Perpendicular scattering of charged particles

Generalized Compound Diffusion (GCD)

Comparison with observations

Summary and Conclusion

For slab geometry and the standard spectrum we have

$$\begin{array}{lll} \left\langle \left(\Delta x\right)^2\right\rangle_{FL}(z) &=& 2\kappa_{FL}|z| \\ \left\langle \left(\Delta z\right)^2\right\rangle_P(t) &=& 2\kappa_{\parallel}t \end{array} \right.$$

The GCD-model provides:

$$\left\langle (\Delta x)^2 \right\rangle_P (t) = 4\kappa_{FL} \sqrt{\frac{\kappa_{\parallel} t}{\pi}} \sim \sqrt{t}$$

 \Rightarrow Perpendicular particle transport behaves subdiffusively!

A. Shalchi & I. Kourakis

FLRW and Diffusion of Charged Particles

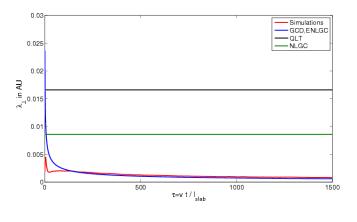
- 4 同 ト 4 ヨ ト 4 ヨ ト

Introduction

Field Line Random Walk (FLRW)

Analytical results for the slab/2D composite model

Perpendicular scattering of charged particles


Generalized Compound Diffusion (GCD)

Comparison with observations

A. Shalchi & I. Kourakis

Summary and Conclusion

The time-dependent perpendicular mean free path $\lambda_{\perp} \sim \langle (\Delta x)^2 \rangle_{\rm p} / (2t)$ for pure slab geometry:

Ruhr-Universität Bochum

FLRW and Diffusion of Charged Particles

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Introduction

Field Line Random Walk (FLRW)

Analytical results for the slab/2D composite model

Perpendicular scattering of charged particles

Generalized Compound Diffusion (GCD)

Comparison with observations

Summary and Conclusion

For slab/2D composite turbulence we have

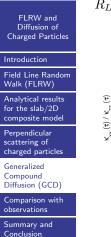
$$\left\langle (\Delta x)^2 \right\rangle_{FL} \sim |z|^{4/3}$$

and thus

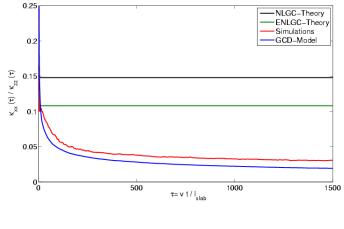
$$\left\langle (\Delta x)^2 \right\rangle_P = \alpha(\nu) \left(\frac{\delta B_{2D}}{B_0} \right)^{4/3} \left[l_{2D} \left\langle (\Delta z)^2 \right\rangle_P \right]^{2/3}$$

with

$$\alpha(\nu) = \frac{\Gamma(7/6)}{\sqrt{\pi}} \left(18\sqrt{\frac{\pi}{2}}C(\nu) \right)^{2/3}.$$


A. Shalchi & I. Kourakis Ruhr-Universität Bochum

FLRW and Diffusion of Charged Particles


< /□ > < □ >

- ∢ ⊒ →

The ratio of perpendicular and parallel diffusion coefficients for $R = R_L/l_{slab} = 0.001$:

FLRW and Diffusion of Charged Particles

< ロ > < 同 > < 回 > < 回 >

э

Introduction

Field Line Random Walk (FLRW)

Analytical results for the slab/2D composite model

Perpendicular scattering of charged particles

Generalized Compound Diffusion (GCD)

Comparison with observations

Summary and Conclusion

\Rightarrow Good agreement between the GCD-model and simulations!

However, a detailed evaluation of the simulations has shown that:

• Parallel transport is weakly superdiffusive

$$\left\langle \left(\Delta z\right)^2 \right\rangle_P \sim t^{1.2}$$

• Perpendicular transport is weakly subdiffusive

$$\left\langle \left(\Delta x\right)^2 \right\rangle_P \sim t^{0.8}$$

- 4 同 ト 4 ヨ ト 4 ヨ ト

Introduction

Field Line Random Walk (FLRW)

Analytical results for the slab/2D composite model

Perpendicular scattering of charged particles

Generalized Compound Diffusion (GCD)

Comparison with observations

A. Shalchi & I. Kourakis

Summary and Conclusion

Comparison with observations

Assume diffusion of parallel transport ($<(\Delta z(t))^2>_P\approx 2t\kappa_{\parallel}$) and thus

$$\kappa_{\perp}(t) = \frac{\alpha(\nu)}{2^{1/3}} \left(\frac{\delta B_{2D}}{B_0}\right)^{4/3} \frac{\left(l_{2D}\kappa_{\parallel}\right)^{2/3}}{t^{1/3}}$$

To proceed, we average over the scattering time

$$t_c = \lambda_\parallel / v$$

and we use $\lambda_{\parallel}=3\kappa_{\parallel}/v$ and $\lambda_{\perp}=3\kappa_{\perp}/v$ to find

$$\overline{\lambda}_{\perp} = \left(\frac{3}{2}\right)^{4/3} \alpha(\nu) \left(\frac{\delta B_{2D}}{B_0}\right)^{4/3} l_{2D}^{2/3} \lambda_{\parallel}^{1/3}.$$

Ruhr-Universität Bochum

FLRW and Diffusion of Charged Particles

(1)

FLRW and Diffusion of Charged Particles

Introduction

Field Line Random Walk (FLRW)

Analytical results for the slab/2D composite model

Perpendicular scattering of charged particles

Generalized Compound Diffusion (GCD)

Comparison with observations

Summary and Conclusion

$\begin{array}{rcl} \nu &=& 5/6\\ \delta B_{2D}^2/B_0^2 &=& 0.8\\ l_{2D} &=& 0.1 l_{slab} \approx 0.003 AU\\ \lambda_{\parallel,Palmer} &\approx& 0.2 AU \end{array}$

we find

For

$\lambda_{\perp,GCD}\approx 0.009AU$

in agreement with observations (see e.g. Palmer (1982)) where we have

 $\lambda_{\perp,Palmer} \approx 0.007 AU$

A. Shalchi & I. Kourakis

FLRW and Diffusion of Charged Particles

FLRW	and
Diffusio	on of
Charged F	Particles

Introduction

Field Line Random Walk (FLRW)

Analytical results for the slab/2D composite model

Perpendicular scattering of charged particles

Generalized Compound Diffusion (GCD)

Comparison with observations

Summary and Conclusion

Summary and Conclusion

- In most cases: FLRW behaves superdiffusively
- The (generalized) compound transport model is a useful tool for describing perpendicular cosmic ray scattering analytically
- The GCD-model agrees with test-particle simulations for slab and slab/2D composite geometry
- By averaging the result for slab/2D turbulence we can explain observed perpendicular mean free path
- However, there is a weak subdiffusive behavior of perpendicular scattering for slab/2D composite geometry

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

FLRW and Diffusion of Charged Particles

Introduction

Field Line Random Walk (FLRW)

Analytical results for the slab/2D composite model

Perpendicular scattering of charged particles

Generalized Compound Diffusion (GCD)

Comparison with observations

Summary and Conclusion Comparison between the assumptions used in the GCD-model and the assumptions used in previous theories:

Assumption	NLGC, WNLT	GCD
GC approximation	YES	YES
Gaussian statistics	YES	YES
Corrsin's hypothesis	YES	YES
Uncorrelated velocities	YES	NO
and fields		
Exponential velocity	YES	NO
correlation function		
Diffusion approximation	YES	NO

A. Shalchi & I. Kourakis

FLRW and Diffusion of Charged Particles

Introduction

Field Line Random Walk (FLRW)

Analytical results for the slab/2D composite model

Perpendicular scattering of charged particles

Generalized Compound Diffusion (GCD)

Comparison with observations

Summary and Conclusion Assume $\kappa_{\perp}(t) \sim t^{b_{\perp}}$:

 $\begin{array}{ll} b_{\perp} < 0 & \text{subdiffusion} \\ b_{\perp} = 0 & (\text{Markovian-}) \text{diffusion} \\ b_{\perp} > 0 & \text{superdiffusion} \end{array}$

Comparison between results for the parameter b_{\perp} from various theories:

Theory	slab turbulence	slab/2D composite
Simulations	-0.5	≈ -0.2
QLT	0	1.0
BAM	0	0
NLGC	0	0
WNLT	0	0
ENLGC	-0.5	0
GCD-model	-0.5	≈ -0.2

FLRW and Diffusion of Charged Particles

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

FLRW and Diffusion of Charged Particles

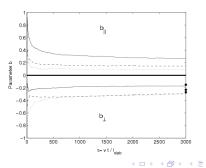
Introduction

Field Line Random Walk (FLRW)

Analytical results for the slab/2D composite model

Perpendicular scattering of charged particles

Generalized Compound Diffusion (GCD)


Comparison with observations

Summary and Conclusion

Assume $\kappa_i(t) \sim t^{b_i}$, $i =_{\parallel,\perp}$:

 $\begin{array}{ll} b_i < 0 & \text{subdiffusion} \\ b_i = 0 & (\text{Markovian-}) \text{diffusion} \\ b_i > 0 & \text{superdiffusion} \end{array}$

The parameters b_{\parallel} and b_{\perp} as a function of time for different values of the dimensionless rigidity: $R=10^{-3}$ (dotted line), $R=10^{-2}$ (dashed line), and $R=10^{-1}$ (solid line). The dots denote the values predicted by the GCD-model:

A. Shalchi & I. Kourakis

Ruhr-Universität Bochum

FLRW and Diffusion of Charged Particles

Introduction

- Field Line Random Walk (FLRW)
- Analytical results for the slab/2D composite model

Perpendicular scattering of charged particles

Generalized Compound Diffusion (GCD)

Comparison with observations

Summary and Conclusion • By assuming homogeneous turbulence

$$R_{xx}(z', z'') = R_{xx}(|z' - z''|)$$

one can easily derive

$$\left\langle \left(\Delta x(z)\right)^2 \right\rangle = \frac{2}{B_0^2} Re \int_0^z dz' \ (z-z') R_{xx}(z')$$

• By applying a fourier transformation we have

$$R_{xx}(z) = \int d^3k \int d^3k' \left\langle \delta B_x(\vec{k}) \delta B_x^*(\vec{k}') e^{i\vec{k}\cdot\vec{x}(z) - i\vec{k}'\cdot\vec{x}(0)} \right\rangle$$

• To proceed we apply Corrsin's independence hypothesis

$$R_{xx}(z) = \int d^3k \int d^3k' \left\langle \delta B_x(\vec{k}) \delta B_x^*(\vec{k}') \right\rangle$$
$$\times \left\langle e^{i\vec{k}\cdot\vec{x}(z) - i\vec{k}'\cdot\vec{x}(0)} \right\rangle$$

FLRW and Diffusion of Charged Particles

Introduction

Field Line Random Walk (FLRW)

Analytical results for the slab/2D composite model

Perpendicular scattering of charged particles

Generalized Compound Diffusion (GCD)

Comparison with observations

Summary and Conclusion

• and for homogeneous turbulence

$$\left\langle \delta B_x(\vec{k}) \delta B_x^*(\vec{k}') \right\rangle = P_{xx}(\vec{k}) \delta(\vec{k} - \vec{k}')$$

we get

$$R_{xx}(z) = \int d^3k \ P_{xx}(\vec{k}) \left\langle e^{i\vec{k}\cdot\Delta\vec{x}(z)} \right\rangle.$$

• By assuming a Gaussian statistics of the field lines

$$\left\langle e^{i\vec{k}\cdot\Delta\vec{x}(z)}\right\rangle = e^{-\frac{1}{2}\left\langle (\Delta x(z))^2 \right\rangle k_x^2 - \frac{1}{2}\left\langle (\Delta y(z))^2 \right\rangle k_y^2 + ik_{\parallel}z}$$

• and for axisymmetric turbulence

$$\left\langle (\Delta x)^2 \right\rangle = \left\langle (\Delta y)^2 \right\rangle$$

RUHR-UNIVERSITÄT BOCHUM

A. Shalchi & I. Kourakis

FLRW and Diffusion of Charged Particles

- 4 同 6 4 回 6 4 回 6

Introduction

Field Line Random Walk (FLRW)

Analytical results for the slab/2D composite model

Perpendicular scattering of charged particles

Generalized Compound Diffusion (GCD)

Comparison with observations

Summary and Conclusion

• QLT for FLRW:

QLT is exact for the slab model:

$$\left\langle \left(\Delta x(z)\right)^2 \right\rangle = 2\kappa_{slab}|z|$$

For the composite model, we find superdiffusion

$$\left< (\Delta x(z))^2 \right> \sim z^2$$

 \Rightarrow QLT is not valid for FLRW in the slab/2D model!

A. Shalchi & I. Kourakis

FLRW and Diffusion of Charged Particles

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction

Field Line Random Walk (FLRW)

Analytical results for the slab/2D composite model

Perpendicular scattering of charged particles

Generalized Compound Diffusion (GCD)

Comparison with observations

Summary and Conclusion

• The diffusion theory of Matthaeus et al. 1995:

$$\left\langle (\Delta x(z))^2 \right\rangle = 2\kappa \mid z \mid$$

$$\Rightarrow \kappa = \frac{\kappa_{slab} + \sqrt{\kappa_{slab}^2 + 4\kappa_{2D}^2}}{2}$$

with

$$\begin{aligned} \kappa_{2D}^2 &= \frac{1}{B_0^2} \int d^3k \; k_{\perp}^{-2} P_{xx}^{2D}(\vec{k}) \\ &\equiv \frac{\pi}{B_0^2} \int_0^\infty dk_{\perp} \; k_{\perp}^{-2} \; g^{2D}(k_{\perp}) \end{aligned}$$

For the standard spectrum, we find

$$\kappa_{2D}^2 \to \infty$$

ł

FLRW and Diffusion of Charged Particles

< ロ > < 同 > < 回 > < 回 >