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Abstract: A new nonlinear theory for the perpendicular transport of charged particles is presented. This
approach is based on an improved nonlinear treatment of fieldline random walk in combination with a
generalized compound diffusion model. The generalized compound diffusion model is much more sys-
tematic and reliable, in comparison to previous theories. Furthermore, the new theory shows remarkably
good agreement with test-particle simulations and heliospheric observations.

Introduction

An early treatment of cosmic ray transport in
a turbulent electromagnetic field has relied on a
quasilinear description of cosmic ray propagation
[1]. In the quasilinear theory (QLT) it is assumed
that particles follow the magnetic field lines while
they move unperturbed in the direction parallel
to the background field. For the slab turbulence
model, the quasilinear perpendicular mean-square
deviation (MSD) of the particle increases linearly
with time, viz.

〈

(∆x)2
〉

= 2κxxt. This lin-
ear time dependence is usually referred to as a
classical Markovian diffusion process. Thirty-four
years later, Kóta & Jokipii [2] formulated a com-
pound diffusion model that assumes that the par-
ticle moves along the magnetic field lines while
it is scattered diffusively in the parallel direction.
Relying on the Taylor-Green-Kubo-formulation, in
combination with the assumption of diffusive field
line random walk (FLRW), Kóta & Jokipii [2] have
found a subdiffusive behavior of particle transport
of the form

〈

(∆x)2
〉

∼
√

t. In the same years,
particle propagation in magnetized plasmas was
explored by making use of test-particle simula-
tions [3, 4], where it was clearly confirmed that
〈

(∆x)2
〉

∼
√

t, so long as a slab model is con-
sidered. If the slab model is replaced by a slab/2D
composite model, however, diffusion is recovered
(though only partially, as demonstrated in this ar-

ticle). This recovery of diffusion cannot been ex-
plained by the method of Kóta & Jokipii [2].

A promising theory, namely the nonlinear guid-
ing center theory (NLGC-theory), has been derived
by Matthaeus et al. [5]. Although this theory
shows agreement with some test-particle simula-
tions in slab/2D geometry, the theory cannot re-
produce subdiffusion for the slab model. An ex-
tended nonlinear guiding center (ENLGC) theory
was therefore formulated by Shalchi [6], which
agrees with simulations for slab and non-slab mod-
els. However, this theory is very close to the orig-
inal NLGC-theory and uses nearly the same crude
approximation (exponential form of the velocity
correlation function, magnetic fields and particle
velocities are uncorrelated). In this paper we pro-
pose a more reliable theoretical approach that uses
less ad-hoc assumptions andans̈atzethan previous
theories.

Nonlinear description of FLRW

The key input into our new formulation is the MSD
of the magnetic field lines< (∆x(z))2 >FL. In
a recent article [7], an improved analytical formu-
lation for nonlinear FLRW in magnetostatic turbu-
lence has been developed. This approach is a direct
generalization of the diffusion theory proposed by
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Matthaeus et al. [8]. However, the new theory can
also be applied in non-diffusive transport cases.

In view of modeling FLRW, the turbulence model
has to be specified in terms of the magnetic corre-
lation tensorPij(~k) =< δBi(~k)δB∗

j (~k) >. Ac-
cording to Bieber et al. [9] the slab/2D compos-
ite model is a realistic model for solar wind tur-
bulence. In this model the correlation tensor has
the form: Pxx(~k) = P slab

xx (~k) + P 2D
xx (~k) with

P slab
xx (~k) = gslab(k‖)δ(k⊥)/k⊥ and P 2D

xx (~k) =
g2D(k⊥)δ(k‖)k

2
y/k3

⊥ and with the two wave spec-
tra

gslab(k‖) =
C(ν)

2π
lslabδB

2
slab (1 + k2

‖l
2
slab)

−ν

g2D(k⊥) =
2C(ν)

π
l2DδB2

2D (1 + k2
⊥l22D)−ν . (1)

Here we used the normalization constantC(ν) =
Γ(ν)/(2

√
πΓ(ν − 1/2)), the slab- and 2D ben-

dover scaleslslab andl2D, the strength of the turbu-
lent fieldsδBslab andδB2D, and the inertial-range
spectral index2ν.

It can easily be demonstrated that, for pure
slab geometry, the field lines behaves diffusively
〈

(∆x(z))
2
〉

|z|→∞
≈ 2κFL | z |. In several previ-

ous papers [8] it has been explicitly assumed that
FLRW is also diffusive for two-component turbu-
lence. However, by applying the improved for-
mulation of FLRW, Shalchi & Kourakis [7] have
shown that

〈

(∆x(z))
2
〉

|z|→∞
=

(

9

√

π

2
C(ν)

)2/3

×
(

δB2D

B0

)4/3

l22D

( | z |
l2D

)4/3

. (2)

The only assumptions that have been applied to de-
rive this result are the validity of the random phase
approximation and the assumption of a Gaussian
distribution of field lines.

Compound transport of particles

FLRW is described as a function ofz. How-
ever, charged particles experience parallel scatter-
ing while moving through the turbulence. Thus,

the parameterz becomes a random variable in par-
ticle transport studies. If we assume that the parti-
cles (or, more precisely, their guiding centers) fol-
low the magnetic field lines (GC approximation),
we have

〈

(∆x(t))2
〉

P
=

∫ +∞

−∞

dz
〈

(∆x(z))2
〉

FL
fP (z, t).

(3)
Here the indexP denotes the perpendicular MSD
of the charged particle, andfP (z, t) is the particle
distribution in the parallel direction. Furthermore,
we assume a Gaussian particle distribution.

fP (z, t) =
(

2π
〈(

∆z(t)
)2〉

P

)−1/2
e
− z

2

2〈(∆z(t))2〉
P .
(4)

By using Eq. (2) for the field line MSD in com-
bination with Eq. (4), we can evaluate Eq. (3) to
find

〈(

∆x
)2〉

P
= α(ν)

(

δB2D

B0

)4/3

×
[

l2D

〈(

∆z(t)
)2〉

P

]2/3
. (5)

with

α(ν) =
Γ(7/6)√

π

(

18

√

π

2
C(ν)

)2/3

. (6)

In observed spectra, it was clearly found thatν =
5/6 and thusα(5/6) ≈ 0.5. A (time-dependent)
diffusion coefficient as obtained from test-particle
simulations can be defined asκxx(t) =< (∆x)

2
>

/(2t). In general, one may adopt the assump-
tion < (∆z(t))

2
>P∼ tb‖+1, implying a paral-

lel diffusion coefficientκzz ∼ tb‖ . By assuming
κxx ∼ tb⊥ , it is straightforward to find from Eq.
(5) the relation

b⊥ =
2b‖ − 1

3
. (7)

Therefore, knowledge ofb‖ (e.g., from simula-
tion data) leads to an evaluation ofb⊥, within
this model. For instance, if parallel transport be-
haves diffusively (b‖ = 0), we find b⊥ = −1/3
(subdiffusion). We refer to this new approach,
which allows a systematic and reliable discrip-
tion of perpendicular transport, as theGeneralized
Compound Diffusion (GCD)-model.
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Figure 1: The ratio of perpendicular and paral-
lel diffusion coefficients (κxx(t)/κzz(t)) for R =
RL/lslab = 0.001. The results from test-particle
simulations (dotted line) are compared to various
theoretical results: NLGC-theory (dashed line),
ENLGC-theory (dash-dotted line), and our GCD-
model (solid line).

Test particle simulations

For slab/2D composite geometry test-particle sim-
ulations can be performed easily by using proce-
dures described previously [3, 4]. We performed
simulations for the following set of parameters:
l2D = 0.1 lslab, ν = 5/6, and 20%/80% slab/2D
composite geometry. In Fig. 1, we depict the ratio
κxx/κzz as a function of the dimensionless time
τ = vt/lslab for the dimensionless rigidity value
R = RL/lslab = 0.001. We have chosen a low
value ofR to ensure that the guiding center approx-
imation is valid. The simulations are compared
with NLGC-theory, ENLGC-theory, and the GCD-
model. For the NLGC-results we have assumed
a parameter value ofa2 = 1, which corresponds
to the assumption that guiding centers follow mag-
netic field lines. Obviously the GCD-model pro-
vides a result much closer to the simulations than
the other theories.

By assuming the form̃κ(τ) = aτb, we can deduce
the time dependence from numerical data by using
b = (ln κ̃(τ) − ln a)/ ln τ ≈ (ln κ̃(τ))/ ln τ in the
high time limit (̃κ denotes the dimensionless diffu-
sion coefficients obtained by the simulations). The
exponents for the parallelb‖ and perpendicularb⊥
diffusion coefficients are depicted in Fig. 2 for dif-
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Figure 2: The parametersb‖ andb⊥ as a function of
time for different values of the dimensionless rigid-
ity: R = 10−3 (dotted line),R = 10−2 (dashed
line), andR = 10−1 (solid line). The dots denote
the values predicted by the GCD-model.

ferent values of the parameterR. Clearly we find
a weakly superdiffusive behavior of parallel trans-
port (b‖ > 0) and a weakly subdiffusive behavior
of perpendicular transport (b⊥ < 0). In all cases
considered, the GCD-model agrees well with the
simulations.

Comparison with observations

It is difficult to directly compare our non-diffusive
result with solar wind observations. In this section,
we attempt a rough comparison by averaging our
non-diffusive result over the characteristic scatter-
ing time tc = λ‖/v, where we have defined the
parallel mean free pathλ‖ and the velocityv of
the charged particle. First, we replace the paral-
lel mean-square deviation in Eq. (5) by a diffusive
behavior (< (∆z(t))2 >P≈ 2tκ‖) and thus one
obtains for the perpendicular diffusion coefficient

κ⊥(t) =
α(ν)

21/3

(

δB2D

B0

)4/3
(

l2Dκ‖
)2/3

t1/3
. (8)

To proceed, we average over the scattering time
and we useλ‖ = 3κ‖/v andλ⊥ = 3κ⊥/v to find
for the perpendicular mean free path

λ⊥ =

(

3

2

)4/3

α(ν)

(

δB2D

B0

)4/3

l
2/3

2D λ
1/3

‖ . (9)
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Assumption NLGC GCD

GC approximation YES YES
Gaussian statistics YES YES
Random phase approx. YES YES
Uncorrelated velocities YES NO
and fields
Exponential velocity YES NO
correlation function
Diffusion approximation YES NO

Table 1: Comparison between the assumptions
used in our GCD-model and the assumptions used
in the NLGC-theory.

Forν = 5/6 andδB2
2D/B2

0 = 0.8, as proposed by
Bieber et al. [9], we obtain

λ⊥ = 0.75 l
2/3

2D λ
1/3

‖ . (10)

Palmer [10] suggested that the parallel mean free
path in the solar wind is0.08AU ≤ λ‖,Palmer ≤
0.3AU and the perpendicular mean free path is
λ⊥,Palmer ≈ 0.007AU . By taking the average
value for the parallel mean free pathλ‖,Palmer ≈
0.2 and by applying Eq. (10) we findλ⊥,GCD ≈
0.009AU (for l2D = 0.1lslab ≈ 0.003AU , as sug-
gested by e.g. Matthaeus et al. [5]), which is very
close to the measurements.

Summary and conclusion

By combining a compound diffusion model (Eq.
(3)) with a nonlinear treatment of FLRW (Eq. (2)),
a new theoretical treatment for the perpendicular
transport of cosmic rays is presented in this arti-
cle. In Table 1, the assumptions of this new theory
are compared to the NLGC-theory, as representa-
tive of existing transport theories. Obviously the
new approach relies on less approximations and
model assumptions. Furthermore, the theory is
very tractable due to its simple analytical form (see
Eqs. (5) and (6)). Through comparison with test
particle simulations, we have demonstrated that
the GCD-model behaves very well and provides a
noticeably improved description of perpendicular
transport compared to several other theories. Fur-
thermore, by averaging over the scattering time, we
have derived a simple formula (Eq. (9)) for the per-

pendicular mean free path which agrees with pre-
vious measurements in the solar wind.
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