Production cross-section of antiprotons in p-p collisions

Y. Futo, S. Sekiguchi, T. Shibata
Department of Physics and Mathematics, Aoyama-Gakuin University, Fuchinobe, Sagamihara, Kanagawa 229-8558, Japan
shibata@phys.aoyama.ac.jp

Abstract

The production cross-section for antiprotons (\bar{p}) in p - p collisions is presented for the study of cosmic-ray antiproton (CR- \bar{p}) propagation in the Galaxy. We propose a semi-empirical production crosssection of \bar{p}, with only three free parameters, the average multiplicity, $N_{\bar{p}}$, the average transverse momentum, $\left\langle p_{T}\right\rangle$, and the deformation parameter, τ, which characterises the deformation from the isotropic angular distribution of \bar{p} in the center of mass system (CMS).

Introduction

In Paper I [1], we proposed an approach to the production cross-section for γ 's in $p-p$ collisions, avoiding debate over the merits of the model, and putting the theoretical basis aside. Namely, as was emphasized in Paper I, for the study of the γ-ray astronomy from the practical point of view, we have neither interest in secondary products other than γ 's nor in the type of intermediate neutral mesons decaying into γ^{\prime} s, via either π^{0}, η, or η^{\prime}. It is more important for us, regardless of the theoretical basis, to first find the form of production crosssection reproducing (or interpolating) the experimental data now available in the energy range of our interest, $1 \mathrm{GeV}-1 \mathrm{PeV}$ in $p-p$ collisions.
In the present paper, in the line with Paper I, we propose a semi-empirical formula for the production cross-section of \bar{p} in $p-p$ collisions, foucssing upon the average transverse momentum, $\left\langle p_{T}\right\rangle$, the multiplicity, $N_{\bar{p}}$, and the parameter, τ, related to the angular distribution. We compare the present formula with the various kinds of experimental data over the wide energy range, $10-1000 \mathrm{GeV}$, covering a large portion of the energy region of our interest, and find that it reproduces very well the accelerator data nowdays available. Energy dependences of the parameters appearing in the formula are summarized in the last subsection. We also compare it with the numerical results performed by Stephens \& Golden [2], and Tan \& Ng [3].

Antiproton production cross-section

Basic distribution function in CMS

Let us assume the invariant cross-section of \bar{p} 's produced by $p-p$ collision in the CMS, slightly modifying the form given in Paper I,
$\frac{1}{\sigma_{p p}} E_{\bar{p}}^{*} \frac{d^{3} \sigma}{d^{3} \boldsymbol{p}_{\bar{p}}^{*}}=\frac{N_{\bar{p}} \Theta_{c}}{4 \pi p_{c}^{2}}\left(1-\frac{p_{\bar{p}}^{*}}{p_{c}}\right)^{\chi_{c}} \mathrm{e}^{-Z_{c}\left(\boldsymbol{p}_{\bar{p}}^{*}\right)}$,
with $\quad Z_{c}\left(\boldsymbol{p}_{\bar{p}}^{*}\right)=\frac{p_{\bar{p}}^{*}}{T_{0}}+\frac{p_{T}}{p_{0}}+\Delta_{c} \frac{p_{T}^{2}}{M_{\bar{p}}^{2}}$,
where $\sigma_{p p}$ is the inelastic cross-section in $p-p$ collisions, $N_{\bar{p}}$ is the average multiplicity of \bar{p}, Θ_{c} is a normalization constant discussed later. p_{c} is the maximum momentum of \bar{p} in the CMS, given by

$$
\begin{equation*}
p_{c}=M_{\bar{p}} \beta_{c} \sqrt{\Gamma_{c}^{2}-4} \tag{3}
\end{equation*}
$$

where $M_{\bar{p}}\left(=938 \mathrm{MeV} / \mathrm{c}^{2}\right)$ is the mass of \bar{p}, and β_{c} is the velocity of the CMS against the LS in units of the velocity of light c, and $\Gamma_{c}(\geq 2)$ is the Lorentz factor corresponding to β_{c}. Two additional parameters, χ_{c} and Δ_{c}, not appearing in the case of the production cross-section for γ-rays, come from the suppression of the production for the high energy \bar{p} coming from the Baryon number conservation. In the present paper we assume the following forms,

$$
\begin{equation*}
\chi_{c}=1+\Delta_{c}\left(9.89 \xi_{c}\right)^{4} \exp \left[-10.5 \xi_{c}\right] \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\Delta_{c}=1-\exp \left[-\left(5.54 \xi_{c}\right)^{3.5}\right] \tag{5}
\end{equation*}
$$

with

$$
\begin{equation*}
\xi_{c}=\frac{M_{\bar{p}}}{p_{c}}=\frac{1}{\beta_{c} \sqrt{\Gamma_{c}^{2}-4}} \tag{6}
\end{equation*}
$$

which are determined so that the experimental data are well reproduced, but the forms of (4) and (5) are not critical, and other choices may be possible, as we don't go into the detail about the theoretical basis.
Introducing two parameters,

$$
\begin{equation*}
\tau=T_{0} / p_{0}, \quad \omega_{c}=p_{c} / T_{0} \tag{7}
\end{equation*}
$$

Eq. (2) is rewritten

$$
\begin{equation*}
Z_{c}\left(\xi, \xi_{T}\right)=\omega_{c}\left(\xi+\tau \xi_{T}\right)+\Delta_{c} \xi_{T}^{2} / \xi_{c}^{2} \tag{8}
\end{equation*}
$$

with $\quad \xi=\frac{p_{\bar{p}}^{*}}{p_{c}}, \quad \xi_{T}=\frac{p_{T}}{p_{c}}=\xi \sin \theta^{*}$,
which appears often in the following discussions. In the low energy limit (where $\xi \approx 0$, and $\tau \approx 0$), one finds that the angular distribution of \bar{p} becomes isotropic in the CMS. On the other hand, it is deformed into the "cigar-type" (or flat-type) distribution at higher energies, i.e., with larger τ, which is a well-known character of multiple meson production. We refer to τ as the deformation parameter (see also Paper I).
Eq. (1) must be normalized to the average multiplicity of $\bar{p}, N_{\bar{p}}$, leading to

$$
\begin{equation*}
\Theta_{c}=1 / \Xi_{2,1}\left(\tau, \omega_{c}\right) \tag{10}
\end{equation*}
$$

where

$$
\begin{align*}
& \Xi_{\ell, m}\left(\tau, \omega_{c}\right)=\int_{0}^{1}(1-\xi)^{\chi_{c}} \frac{\xi^{\ell} d \xi}{\sqrt{\xi^{2}+\xi_{c}^{2}}} \\
& \quad \times \int_{0}^{1} \mathrm{e}^{-Z_{c}(\xi, \xi t)} \frac{t^{m} d t}{\sqrt{1-t^{2}}} \tag{11}
\end{align*}
$$

Energy distribution in laboratory system

For practical purposes, we need the energy distribution in the LS after integrating over the emission angle θ of \bar{p} in the LS, given by

$$
\begin{equation*}
\frac{d \sigma}{d E_{\bar{p}}}=2 \pi p_{\bar{p}} \int_{\min }^{\max } E_{\bar{p}} \frac{d^{3} \sigma}{d^{3} \boldsymbol{p}_{\bar{p}}} d(\cos \theta) \tag{12}
\end{equation*}
$$

where $E_{\bar{p}}$ is the total energy of \bar{p} in the LS, and the minimum value for $\cos \theta$ relates to both $E_{\bar{p}}$ and p_{c}.

Now, introducing a scaling variable, X, related to the energy $E_{\bar{p}}$ of \bar{p},

$$
\begin{equation*}
X \equiv \frac{E_{\bar{p}}}{2 p_{c} \beta_{c} \Gamma_{c}}=\frac{E_{\bar{p}} / \sqrt{s}}{\beta_{c}^{2} \sqrt{\Gamma_{c}^{2}-4}} \tag{13}
\end{equation*}
$$

where \sqrt{s} is the total energy in the CMS, which corresponds to the fractional energy of $\bar{p}, E_{\bar{p}} / E_{p}$, (E_{p} : total energy of the incident proton) in the high energy limit, we obtain the energy distribution of \bar{p} in the LS

$$
\begin{gather*}
\frac{1}{\sigma_{p p}} \frac{d \sigma}{d X}=N_{\bar{p}}\left(E_{p}\right) \Theta_{c}\left(E_{p}\right) \\
\times \int_{\xi_{m}}^{1}(1-\xi)^{\chi_{c}} \mathrm{e}^{-Z_{c}\left(\xi, \xi_{T}\right)} \frac{\xi d \xi}{\sqrt{\xi^{2}+\xi_{c}^{2}}} \tag{14}
\end{gather*}
$$

where

$$
\begin{align*}
\xi_{m}(X) & =2\left(\Gamma_{c}^{2}-1\right)\left|1-\beta_{\bar{p}}(X) / \beta_{c}\right| X \tag{15}\\
\xi_{T}(\xi, X) & =\sqrt{\xi^{2}-\left[2 X-\sqrt{\xi^{2}+\xi_{c}^{2}} / \beta_{c}\right]^{2}} \tag{16}
\end{align*}
$$

and $\beta_{\bar{p}}$ is the velocity of \bar{p} in units of the velocity of light c, depending on X in the low energy region. For the high energy region $\left(\Gamma_{c} \gg 1\right.$, and $E_{\bar{p}} \gg$ $M_{\bar{p}}$, we have

$$
\begin{equation*}
\frac{\xi_{m}}{X} \approx\left|\frac{s}{4 E_{\bar{p}}^{2}}-1\right|\left[1+\frac{1}{4 \Gamma_{c}^{2}}\left(\frac{3 s}{4 E_{\bar{p}}^{2}}-1\right)\right] \tag{17}
\end{equation*}
$$

leading to

$$
\begin{equation*}
\xi_{m}(X) \approx X \approx E_{\bar{p}} / E_{p}, \quad \text { for } E_{\bar{p}} \gg \sqrt{s} / 2 \tag{18}
\end{equation*}
$$

One should remember that the familiar Feynman scaling variable, $x=2 p_{L}^{*} / \sqrt{s}\left(p_{L}^{*}\right.$: longitudinal momentum of \bar{p} in the CMS), is also given by the fractional form, $E_{\bar{p}} / E_{p}$, in the high energy limit.

Comparison with the experimental data

Procedure for parameter determination

Before comparing our numerical results with the experimental data, we discuss the parameter setting in our model, and the procedure for parameter determination in advance.
There are three parameters in Eq. (1), $N_{\bar{p}}, T_{0}$, and p_{0}, and we have to find their energy dependence by comparing the formula with the data. We don't

Figure 1: Average transverse momentum of \bar{p}

Figure 2: Cross section against momentum.

Figure 3: Cross section against rapidity.

Figure 4: Cross section against p_{T}.
consider here the two additional parameters, χ_{c} and Δ_{c}, as they are not important in the high energy region. Here, we concentrate our attention upon three parameters, $\left(N_{\bar{p}}, \tau,\left\langle p_{T}\right\rangle\right)$, in place of ($N_{\bar{p}}, T_{0}, p_{0}$). This is because the average multiplicity, $N_{\bar{p}}$, and the average transverse momentum, $\left\langle p_{T}\right\rangle$, of \bar{p} are rather reliably determined from experimental data, in particular the latter is quite stable at approximately $500 \mathrm{MeV} / \mathrm{c}$, almost independent of the interaction energy, except near the threshold in the kinetic energy, $E_{\text {th }}=5.6 \mathrm{GeV}$.
Now, from Eq. (1), the average transverse momentum $\left\langle p_{T}\right\rangle$ is given by the use of $\Xi_{\ell, m}\left(\tau, \omega_{c}\right)$ (see Eq. (11)),

$$
\begin{equation*}
\left\langle p_{T}\right\rangle / p_{c}=\Xi_{3,2}\left(\tau, \omega_{c}\right) / \Xi_{2,1}\left(\tau, \omega_{c}\right) \tag{19}
\end{equation*}
$$

So, first let us examine the data on the average transverse momentum of \bar{p} [4], $\left\langle p_{T}\right\rangle$, against the kinetic energy of the incident proton in the range $10-2000 \mathrm{GeV}$ in Fig. 1. The empirical curve is given by

$$
\begin{align*}
\left\langle p_{T}\right\rangle\left(E_{k}\right) & =p_{T, 0}\left[1-\exp \left(-a_{T} \hat{E}_{k}\right)\right] \hat{E}_{k}^{b_{T}} \tag{20}\\
\text { with } \quad \hat{E}_{k} & =K_{E} E_{k}, \quad K_{E}=1-E_{\mathrm{th}} / E_{k} \tag{21}
\end{align*}
$$

where $p_{T, 0}=416 \mathrm{MeV} / \mathrm{c}, a_{T}=0.450, b_{T}=0.0238$, and E_{k} is the kinetic energy of the incident proton in GeV .
In Fig. 1, we draw also two curves expected from the parameterizations of Stephens \& Golden (broken curves) [2], and Tan \& Ng (dotted curves) [3]. Unfortunately, we can not confirm how the average transverse momentum of $\bar{p},\left\langle p_{T}\right\rangle$, drops around $E_{k} \approx E_{\mathrm{th}}$, as no data are available near the threshold energy, while it must be kinematically null for $E_{k} \rightarrow E_{\text {th }}$.
In the following discussions, we regard $N_{\bar{p}}$ and τ as free parameters to be determined from the comparison with the experimental data, and the third one, ω_{c}, is bound to the average transverse momentum $\left\langle p_{T}\right\rangle$ for a fixed τ, i.e., it is given by a numerical solution, equating Eq. (19) with Eq. (20),

$$
\begin{equation*}
\frac{p_{T, 0}}{p_{c}}\left[1-\exp \left(-a_{T} \hat{E}_{k}\right)\right] \hat{E}_{k}^{b_{T}}=\frac{\Xi_{3,2}\left(\tau, \omega_{c}\right)}{\Xi_{2,1}\left(\tau, \omega_{c}\right)} . \tag{22}
\end{equation*}
$$

Curve-fitting to the experimental data

First, we present the invariant cross-sections for several fixed emission angles against the momen-
tum of \bar{p} in the LS in Fig. 2 for the incident proton with $P_{0}=19.2 \mathrm{GeV} / \mathrm{c}$ [5], where the best fit curves (solid ones) using the least squares method are also plotted.
Second, in Fig. 3 we show the invariant cross-sections for several fixed transverse momenta against the rapidity of $\bar{p}, y^{*}=\frac{1}{2} \ln \left[\left(E_{\bar{p}}^{*}+\right.\right.$ $\left.\left.p_{L}^{*}\right) /\left(E_{\bar{p}}^{*}+p_{L}^{*}\right)\right]$, in the CMS in ISR region [6], $\sqrt{s}=30.6 \mathrm{GeV}$, corresponding to the LS total energy of the incident proton with $E_{p}=500 \mathrm{GeV}$.
Third, in Fig. 4 we show further the invariant crosssections for several energies of the incident proton against the transverse momentum of \bar{p} with two sets, $x=016,0.32$ [7], where x denotes the Feynman variable. In these figures, we draw also the curves expected from Stephens (broken curves) [2], and Tan \& Ng (dotted curves) [3].

Energy dependence of parameters

In the last section we obtained two parameters, $N_{\bar{p}}$, and τ, by fitting our formula to the data for various energies. First let us demonstrate the average multiplicity of $\bar{p} N_{\bar{p}}$, against the kinetic energy of the incident proton, E_{k}, in Fig. 5, where we plot also the average multiplicity directly measured by ISR (square-cross) [8] and UA5 (open square) [9]. One finds that the average multiplicity obtained from Figs. 2-4 (see [10] for more detail) is in good agreement with the direct data. We plot an empirical curve in the figure, given by
$N_{\bar{p}}=N_{\bar{p}, 0} K_{E}^{5.15}\left[1-\exp \left(-a_{N} \hat{E}_{k}^{1 / 2}\right)\right] \hat{E}_{k}^{1 / 4}$,
where $N_{\bar{p}, 0}=0.0233, a_{N}=0.0880$.
Second, in Fig. 6, we demonstrate the deformation parameter τ against the available energy for the \bar{p}-production in the CMS, $\sqrt{s}-4 M_{p}\left(4 M_{p}\right.$: threshold of the CMS energy), where the straight line plotted is given by

$$
\begin{equation*}
\tau=\tau_{0}\left[\sqrt{s}-4 M_{p}\right]^{a_{\tau}} \tag{24}
\end{equation*}
$$

where $\tau_{0}=0.363, a_{\tau}=0.823$.
There are no spaces to discuss the present results, and the full paper of the present results will be published in the near future [10], together with the application for the experimental data on CR- \bar{p} 's.

Figure 5: Energy dependence of $N_{\bar{p}}$ (see [10]).

Figure 6: Energy dependence of τ (see also [10]).

References

[1] Suzuki, R., Watanabe, J., \& Shibata, T. 2005, Astropart. Phys., 23, 510
[2] Stephens, S. A., \& Golden, R. L. 1987, Space Sci. Rev., 46, 31;
Stephens, S. A. 1981, Space Sci. Rev., 76, 87
[3] Tan, L. C. \& Ng, L. K. 1983, J. Phys. G: Nucl. Phys. 9, 227
[4] Alner, G. J., et al. (UA5 collaboration) 1985, Nucl. Phys. B258, 505
[5] Akerlof, C. W., et al. 1971, Phys. Rev. D., D3, 645
[6] Berger, E. L., 1973, Ref. TH. 1737-CERN
[7] Allaby, J. V., et al. 1972, Proc. 4th Int. Conf. on High Energy Collisions, Oxford, 2, 285
[8] Antinucci, M., et al. 1973, Nuovo Cimento Let., 6, 121
[9] Rushbrooke, J. G. 1985, CERN-EP/85-178, November 1
[10] Futo, Y, Sekiguchi, S., \& Shibata, T. 2007, submitted to Astropart. Phys.

