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Abstract: The production cross-section for antiprotons (p̄) in p-p collisions is presented for the study of
cosmic-ray antiproton (CR-̄p) propagation in the Galaxy. We propose a semi-empirical production cross-
section ofp̄, with only three free parameters, the average multiplicity, Np̄, the average transverse mo-
mentum,〈pT 〉, and the deformation parameter,τ , which characterises the deformation from the isotropic
angular distribution of̄p in the center of mass system (CMS).

Introduction

In Paper I [1], we proposed an approach to the
production cross-section forγ’s in p-p collisions,
avoiding debate over the merits of the model, and
putting the theoretical basis aside. Namely, as was
emphasized in Paper I, for the study of theγ-ray
astronomy from the practical point of view, we
have neither interest in secondary products other
than γ’s nor in the type of intermediate neutral
mesons decaying intoγ’s, via eitherπ0, η, orη′. It
is more important for us, regardless of the theoreti-
cal basis, to first find the form of production cross-
sectionreproducing (or interpolating) the experi-
mental data now available in the energy range of
our interest, 1 GeV–1 PeV inp-p collisions.

In the present paper, in the line with Paper I, we
propose a semi-empirical formula for the produc-
tion cross-section of̄p in p-p collisions, foucssing
upon the average transverse momentum,〈pT 〉, the
multiplicity, Np̄, and the parameter,τ , related to
the angular distribution. We compare the present
formula with the various kinds of experimental
data over the wide energy range, 10–1000GeV,
covering a large portion of the energy region of our
interest, and find that it reproduces very well the
accelerator data nowdays available. Energy depen-
dences of the parameters appearing in the formula
are summarized in the last subsection. We also
compare it with the numerical results performed by
Stephens & Golden [2], and Tan & Ng [3].

Antiproton production cross-section

Basic distribution function in CMS

Let us assume the invariant cross-section ofp̄’s
produced byp-p collision in the CMS, slightly
modifying the form given in Paper I,
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whereσpp is the inelastic cross-section inp-p col-
lisions, Np̄ is the average multiplicity of̄p, Θc is
a normalization constant discussed later.pc is the
maximum momentum of̄p in the CMS, given by

pc = Mp̄βc

√

Γ 2
c − 4, (3)

whereMp̄ (= 938 MeV/c2) is the mass of̄p, andβc

is the velocity of the CMS against the LS in units of
the velocity of lightc, andΓc (≥ 2) is the Lorentz
factor corresponding toβc. Two additional param-
eters,χc and∆c, not appearing in the case of the
production cross-section forγ-rays, come from the
suppression of the production for the high energyp̄
coming from the Baryon number conservation. In
the present paper we assume the following forms,

χc = 1 + ∆c(9.89ξc)
4 exp[−10.5ξc], (4)
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which are determined so that the experimental data
are well reproduced, but the forms of (4) and (5)
are not critical, and other choices may be possible,
as we don’t go into the detail about the theoretical
basis.

Introducing two parameters,

τ = T0/p0, ωc = pc/T0, (7)

Eq. (2) is rewritten

Zc(ξ, ξT ) = ωc(ξ + τξT ) + ∆cξ
2
T /ξ2

c , (8)

with ξ =
p∗p̄
pc

, ξT =
pT

pc
= ξ sin θ∗, (9)

which appears often in the following discussions.
In the low energy limit (whereξ ≈ 0, andτ ≈ 0),
one finds that the angular distribution ofp̄ becomes
isotropic in the CMS. On the other hand, it is de-
formed into the“cigar-type” (or flat-type) distribu-
tion at higher energies, i.e., with largerτ , which is
a well-known character of multiple meson produc-
tion. We refer toτ as the deformation parameter
(see also Paper I).

Eq. (1) must be normalized to the average multi-
plicity of p̄, Np̄, leading to

Θc = 1/Ξ2,1(τ, ωc), (10)
where
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Energy distribution in laboratory system

For practical purposes, we need the energy distri-
bution in the LS after integrating over the emission
angleθ of p̄ in the LS, given by
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whereEp̄ is thetotal energy ofp̄ in the LS, and the
minimum value forcos θ relates to bothEp̄ andpc.

Now, introducing a scaling variable,X , related to
the energyEp̄ of p̄,

X ≡ Ep̄

2pcβcΓc
=

Ep̄/
√

s

β2
c

√

Γ 2
c − 4
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where
√

s is the total energy in the CMS, which
corresponds to the fractional energy ofp̄, Ep̄/Ep,
(Ep: total energy of the incident proton) in the high
energy limit, we obtain the energy distribution ofp̄
in the LS
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andβp̄ is the velocity of̄p in units of the velocity of
light c, depending onX in the low energy region.
For the high energy region (Γc ≫ 1, andEp̄ ≫
Mp̄), we have
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leading to

ξm(X) ≈ X ≈ Ep̄/Ep, for Ep̄ ≫
√

s/2. (18)

One should remember that the familiar Feynman
scaling variable,x = 2p∗L/

√
s (p∗L: longitudinal

momentum of̄p in the CMS), is also given by the
fractional form,Ep̄/Ep, in the high energy limit.

Comparison with the experimental data

Procedure for parameter determination

Before comparing our numerical results with the
experimental data, we discuss the parameter set-
ting in our model, and the procedure for parameter
determination in advance.

There are three parameters in Eq. (1),Np̄, T0, and
p0, and we have to find their energy dependence
by comparing the formula with the data. We don’t
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Figure 1: Average transverse momentum ofp̄

10
-9

10
-7

10
-5

10
-3

10
-1

10
1

10
3

0 5 10 15 0 5 10 15 20

momentum of antiproton in LS;  p (GeV/c)

= 20 mrad

40

60

30

P0 = 19.2 GeV/c

E
d

 3

d
 3
p

(m
b

 s
r-1

 G
eV

-2
 c

3
)

.

.

.

~ ~

θθθθ
(x 1000)

(x 100)

(x 10)

σσ σσ

12.5 mrad

50

70

35

(x 1000)

(x 100)

(x 10)

:  this work

:  Stephens

:  Tan & Ng

τ  τ  τ  τ  =  0.712

Np = 0.00221-

Figure 2: Cross section against momentum.
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Figure 3: Cross section against rapidity.
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Figure 4: Cross section againstpT .

consider here the two additional parameters,χc

and∆c, as they are not important in the high en-
ergy region. Here, we concentrate our attention
upon three parameters, (Np̄, τ , 〈pT 〉), in place of
(Np̄, T0, p0). This is because the average mul-
tiplicity, Np̄, and the average transverse momen-
tum,〈pT 〉, of p̄ are rather reliably determined from
experimental data, in particular the latter is quite
stable at approximately 500 MeV/c, almost inde-
pendent of the interaction energy, except near the
threshold in the kinetic energy,Eth = 5.6 GeV.

Now, from Eq. (1), the average transverse momen-
tum 〈pT 〉 is given by the use ofΞℓ,m(τ, ωc) (see
Eq. (11)),

〈pT 〉/pc = Ξ3,2(τ, ωc)/Ξ2,1(τ, ωc). (19)

So, first let us examine the data on the average
transverse momentum of̄p [4], 〈pT 〉, against the
kinetic energy of the incident proton in the range
10–2000GeV in Fig. 1. The empirical curve is
given by

〈pT 〉(Ek) = pT,0

[

1− exp(−aT Êk)
]

ÊbT

k , (20)

with Êk = KEEk, KE = 1− Eth/Ek, (21)

wherepT,0 = 416 MeV/c,aT = 0.450,bT = 0.0238,
andEk is the kinetic energy of the incident proton
in GeV.

In Fig. 1, we draw also two curves expected from
the parameterizations of Stephens & Golden (bro-
ken curves) [2], and Tan & Ng (dotted curves) [3].
Unfortunately, we can not confirm how the aver-
age transverse momentum ofp̄, 〈pT 〉, drops around
Ek ≈ Eth, as no data are available near the thresh-
old energy, while it must be kinematically null for
Ek → Eth.

In the following discussions, we regardNp̄ andτ
as free parameters to be determined from the com-
parison with the experimental data, and the third
one,ωc, is bound to the average transverse momen-
tum 〈pT 〉 for a fixedτ , i.e., it is given by a numer-
ical solution, equating Eq. (19) with Eq. (20),

pT,0

pc

[

1−exp(−aT Êk)
]

ÊbT

k =
Ξ3,2(τ, ωc)

Ξ2,1(τ, ωc)
. (22)

Curve-fitting to the experimental data

First, we present the invariant cross-sections for
several fixed emission angles against the momen-
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tum of p̄ in the LS in Fig. 2 for the incident proton
with P0 = 19.2 GeV/c [5], where the best fit curves
(solid ones) using the least squares method are also
plotted.

Second, in Fig. 3 we show the invariant
cross-sections for several fixed transverse mo-
menta against the rapidity of̄p, y∗ = 1

2 ln[(E∗

p̄ +
p∗L)/(E∗

p̄ + p∗L)], in the CMS in ISR region [6],√
s = 30.6GeV, corresponding to the LStotal en-

ergy of the incident proton withEp = 500 GeV.

Third, in Fig. 4 we show further the invariant cross-
sections for several energies of the incident pro-
ton against the transverse momentum ofp̄ with
two sets,x = 016, 0.32 [7], wherex denotes the
Feynman variable. In these figures, we draw also
the curves expected from Stephens (broken curves)
[2], and Tan & Ng (dotted curves) [3].

Energy dependence of parameters

In the last section we obtained two parameters,Np̄,
andτ , by fitting our formula to the data for various
energies. First let us demonstrate the average mul-
tiplicity of p̄ Np̄, against the kinetic energy of the
incident proton,Ek, in Fig. 5, where we plot also
the average multiplicitydirectly measured by ISR
(square-cross) [8] and UA5 (open square) [9]. One
finds that the average multiplicity obtained from
Figs. 2-4 (see [10] for more detail) is in good agree-
ment with the direct data. We plot an empirical
curve in the figure, given by

Np̄ =Np̄,0 K5.15
E

[

1− exp(−aN Ê
1/2
k )

]

Ê
1/4
k , (23)

whereNp̄,0 = 0.0233, aN = 0.0880.

Second, in Fig. 6, we demonstrate the deforma-
tion parameterτ against the available energy for
the p̄-production in the CMS,

√
s − 4Mp (4Mp:

threshold of the CMS energy), where the straight
line plotted is given by

τ = τ0

[√
s− 4Mp

]aτ

, (24)

whereτ0 = 0.363, aτ = 0.823.

There are no spaces to discuss the present results,
and the full paper of the present results will be pub-
lished in the near future [10], together with the ap-
plication for the experimental data on CR-p̄’s.
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