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Accuracy of numerical functional transforms applied to derive Moli ère series terms
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Abstract: Accuracies of numerical Fourier and Hankel transforms are examined with the Takahasi-Mori
theory of error evaluation. The higher Molière terms both for spatial and projected distributions derived
by these methods agree very well with those derived analytically. The methods will be valuable to solve
other transport problems concerning fast charged particles.

Introduction

To solve diffusion equations in theoretical stud-
ies of particle transport, method of the functional
transforms is effective. In the final stage of apply-
ing this method we usually use analytical methods
to search for exact solutions in mathematical ta-
bles and/or to apply approximation methods e.g.
the saddle point method [1, 2] or others. If numer-
ical methods for functional transforms were appli-
cable, our knowledge of particle transport prob-
lems would be increased.

Andreo, Medin, and Bielajew applied a numerical
method of functional transforms on derivation of
Molière’s series function [3, 4, 5] by using a tool in
mathematical libraries and their own integrations
[6]. It will be necessary and interesting to con-
firm reliability of numerical functional transforms
by error analyses. We apply Takahasi-Mori theory
of error evaluation based on the complex function
theory [7] to investigate accuracy and efficiency of
the method. Accuracy of our analytical results on
Molière’s series function of higher orders [8] will
also be confirmed in these investigations.

Numerical functional transforms for
Moli ère’s series function

We evaluate the spatial and the projected Molière
series functions [5] by numerical integration using
trapezoidal method:
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where
∑

′ denotes the values of the both ends of
summation should be taken half. The results agree
very well with those derived by analytical method
[8], as indicated forf (6)(ϑ) andf (6)

P (ϕ) in Figs. 1
and 2.

Error analyses of numerical integra-
tions with Takahasi-Mori theory

Takahasi and Mori developed a new method to
evaluate errors of numerical integration based on
the complex function theory [7]. We can approxi-
mate a definite integral

I ≡
∫ b

a

f(x)dx (3)
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Figure 1: Comparison off (6)(ϑ), derived by the
numerical method (dots) and the analytical method
(lines).

by a numerical integration

Ia ≡
∑

Akf(ak). (4)

According to Takahasi and Mori, applying Cauchy
integral theorem
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error of the numerical integration∆I can be eval-
uated as
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where Φ(z) is called the characteristic function
of error evaluation determined by the method of
numerical integration irrespective of the integrand
function.

In case of a numerical integration for infinite inter-
val (−∞,∞) by the trapezoidal method,
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Figure 2: Comparison off (6)
P (ϕ), derived by the

numerical method (dots) and the analytical method
(lines).
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where the sign± should agree with the sign of the
imaginary component ofz.

In case of a numerical integration for semi-infinite
interval(0,∞) by the trapezoidal method,
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As it approximately satisfies
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, (11)

Φ(z) can be well approximated as
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, (12)

by that for infinite interval [7].
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Figure 3: Path of complex integral for∆I(n)
P with

n ≥ 1.

Error analyses for projected angular
distribution

The integral in (2) for semi-infinite interval can be
evaluated by the integral for infinite interval with
the integrand extended on the negative real axis,
as the integrand is even. So we can evaluate the
error of numerical integration (2) by the formula
for infinite interval, thus the error can be evaluated
as

∆I
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with Φ(z) of Eq. (8). The path of complex in-
tegration is a pair of parallel straight lines, from
iy0 + i∞ to iy0 − i∞ with y0 positive and from
iy0 − i∞ to iy0 + i∞ with y0 negative.

Forn = 0,

∆I
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This integral can be well evaluated by the saddle
point method [1, 2]:
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4 , (16)

where the saddle points exist at

z̄ = ±y0i, where
y0
2
≡

2π

h
− ϕ. (17)

For n ≥ 1, the integrandg(z) has a branch point
at the origin. So we take a schnitt between the ori-
gin and the saddle pointz = y0i defined above

Figure 4: Path of complex integral for∆I(n) with
n ≥ 0.

and take the path as shown in Fig. 3. The con-
tribution to∆I
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P from the saddle points is about
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0/4 and is negligible. The value of
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For enough small step size of numerical integration
the factorey2/4 cosh(ϕy) can be neglected as they
satisfyπ/h≫ ϕ andπ/h≫ 1, so we have
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whereζ(k) denotesζ-function [9]. The results of

∆I
(n)
P are indicated in Fig. 5 forn of 1 and 6.

Error analyses for spatial angular dis-
tribution

Molière series function for spatial angular distri-
bution (1) is derived from the integral over semi-
infinite interval(0,∞). The error of numerical in-
tegration (1) can be evaluated by the complex inte-
gral (6) of Takahasi-Mori theory:
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Figure 5: Error evaluation∆I(1)
P (left) and∆I

(6)
P

(right) vs the division rate in derivation of Molière
series function for projected angular distribution.
Our calculations (dots) agree well with Takahasi-
Mori predictions (lines).

with the characteristic functionΦ(z) of Eq. (10),
or its approximation (8). The path of complex in-
tegration is taken as a straight line parallel to the
real axis with positive imaginary componenty0
and real component from∞ to 0, a straight line on
the imaginary axis fromiy0 to−iy0, and a straight
line parallel to the real axis with negative imagi-
nary component−y0 and real component from 0
to∞, as shown in Fig. 4.

Taking accountg(z) is odd andΦ(z) falls ex-
tremely rapidly at positions far from the real axis,
∆I(n) can be evaluated as
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whereBn denotes Bernoulli number [9]. The
results of∆I(n) are indicated in Fig. 6 forn of 1
and 6.

Conclusions and discussions

We have evaluated Molière series functions by nu-
merical functional transforms up to6-th higher
terms for both spatial and projected angular distri-
butions. The results have agreed very well with
those derived by analytical method [8] and An-
dreo et al.’s [6], and convergences of our numer-
ical functional transforms are confirmed by Taka-
hasi and Mori theory of error evaluation [7].
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Figure 6: Error evaluation∆I(1) (left) and∆I(6)

(right) vs the division rate in derivation of Molière
series function for spatial angular distribution. Our
calculations (dots) agree well with Takahasi-Mori
predictions (lines).

These results will prove reliability of numerical
functional transforms applied in particle transport
problems, as well as efficiencies of Takahasi-Mori
theory in these problems.
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