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Abstract: Accuracies of numerical Fourier and Hankel transforms asenéned with the Takahasi-Mori
theory of error evaluation. The higher Moliere terms bathdpatial and projected distributions derived
by these methods agree very well with those derived anallticThe methods will be valuable to solve
other transport problems concerning fast charged pasticle

Introduction Numerical functional transforms for
Moli ere’s series function

To solve diffusion equations in theoretical stud-

ies of particle transport, method of the functional e evaluate the spatial and the projected Moli

transforms is effective. In the final stage of apply- series functions [5] by numerical integration usil
ing this method we usually use analytical methods trapezoidal method:

to search for exact solutions in mathematical ta- L N

bles and/or to apply approximation methods e.g. FW) =& [Faysoy)e T (%ln %)

the saddle point method [1, 2] or others. If numer- 2262 25 2 oa\nm

ical methods for functional transforms were appli- = #1222 kJo(@hk)e 1 (2= m 25=)" (1)
H 2 . . n

cable, our knoyvledge of particle transport prob- 1(3”)(90) — 2 [y cos(py)e— (%m ,4_2)

lems would be increased. 0

Andreo, Medin, and Bielajew applied a numerical ~ ~ 2, :‘;O’cos(whk)e*"i"'z (22621 222)"(2)
method of functional transforms on derivation of

Moliére’s series function [3, 4, 5] by using a tool in
mathematical libraries and their own integrations
[6]. It will be necessary and interesting to con-
firm reliability of numerical functional transforms
by error analyses. We apply Takahasi-Mori theory
of error evaluation based on the complex function
theory [7] to investigate accuracy and efficiency of Error analyses of numerical integra-

the method. Accuracy of our analytical results on tions with Takahasi-Mori theory
Moliere's series function of higher orders [8] will

also be confirmed in these investigations.

where) "’ denotes the values of the both ends
summation should be taken half. The results ag
very well with those derived by analytical methc
[8], as indicated forf® (1) and £{”) () in Figs. 1
and 2.

Takahasi and Mori developed a new method
evaluate errors of numerical integration based
the complex function theory [7]. We can appro»
mate a definite integral

I= /b f(x)dx 3)
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Moliere spatial Function(6) Moliere Projected Function(6)
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Figure 1: Comparison of °)(9)), derived by the ~ Figure 2: Comparison OfF(,G)(go), derived by the
numerical method (dots) and the analytical method numerical method (dots) and the analytical mett
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(lines). (lines).
by a numerical integration = limpoo In(—1= )+ 22023 1
C A TZ
I, = Z Ap f(ag). (4) = -7 {z Sign(Im z) + cot 7}
According to Takahasi and Mori, applying Cauchy =~ +27ie?™=/" (8)

integral theorem . _ _
where the signt should agree with the sign of th

f(z) = L Mdz (5) imaginary component of.
2miJ Z-w In case of a numerical integration for semi-infini
error of the numerical integratioA] can be eval-  interval(0, co) by the trapezoidal method,
uated as N _
= e f(f Y o)
1 z—a Ay Then the characteristic functiof®(z) is deter-
T 2w (lnz_b—zz_ak>f<2>dz mined as
! z h z
= 5 P 2()f(2)dz, (6) B(z) =In(—) + 5 —(-7)
h
where ®(z) is called the characteristic function = 1n(_%) S 1/,(%) — 1ot %Z (10)

of error evaluation determined by the method of
numerical integration irrespective of the integrand As it approximately satisfies
function.

. o 1
In case of a numerical integration for infinite inter- P(z) = Inz— 25 (11)
val (—oo, 00) by the trapezoidal method, z
®(z) can be well approximated as

| sty 3 atm. @ 0(z) ~ —m {i Sign(lm 2) + ot T}, (12)

Then the characteristic functiof®(z) is deter-

by that for infinite interval [7].
mined as y (71

, 2+ kh > h
®(z) = lim In =70 — > Z —kh

=—0C

154



30TH INTERNATIONAL CosMIC RAY CONFERENCE

Figure 3: Path of complex integral fmk[é,") with
n > 1.

Error analyses for projected angular
distribution

The integral in (2) for semi-infinite interval can be
evaluated by the integral for infinite interval with

the integrand extended on the negative real axis,
as the integrand is even. So we can evaluate the

error of numerical integration (2) by the formula
for infinite interval, thus the error can be evaluated
as

AI(”) 21 %(I)(z)g(z)dz7 where (13)
i
1 2 (22 22\"
_ T (T InZ 14
g(2) — cos(pz)e ( T ) (14)

with ®(z) of Eq. (8). The path of complex in-
tegration is a pair of parallel straight lines, from
1Yo + 100 t0 iyy — oo with yo positive and from
iyp — 100 10 iyy + 100 with yo negative.

Forn =0,

ALY = 11 %@(2) cos(gzﬁz)e*%dz. (15)

P T 274

This integral can be well evaluated by the saddle
point method [1, 2]:

n 2 _u
AIIS, ) ~ —ﬁe 4 5 (16)
where the saddle points exist at
Z = tyoi here Yo _2m_ a7
= TYol, w 9 = I ®-

Forn > 1, the integrand;(z) has a branch point
at the origin. So we take a schnitt between the ori-
gin and the saddle point = ¢ defined above
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Figure 4: Path of complex integral fax7(™) with
n > 0.

and take the path as shown in Fig. 3. The c
tribution to AII()") from the saddle points is abot
(2//7)e %/4 and is negligible. The value o
AISY is determined from the line integral at bo
sides of the schnitt:

2
(n) _ Yo id —my/h ¥
Al fo :r(n:g' :;ff](wq,/17 cosh(py)e™®

At (4))

For enough small step size of numerical integrat
the factorev’/4 cosh(py) can be neglected as the
satisfym/h > ¢ andr/h > 1, so we have

n, n—1
A=A 13;: [y ) (m )
o ) e
—2n(2n —DIc2n+1)
(ln ’,L" )n—l(z’_:r)—Zn—l

where( (k) denoteg -function [9]. The results of
AIS are indicated in Fig. 5 fon of 1 and 6.

27\'L

(18)

) —my/hy
mnh(wy/h)

~

19)

Error analyses for spatial angular dis-
tribution

Moliere series function for spatial angular disti
bution (1) is derived from the integral over sen
infinite interval(0, co). The error of numerical in-
tegration (1) can be evaluated by the complex ir
gral (6) of Takahasi-Mori theory:

1

NG % B(2)g(z)d=, where (20)
271,

9(z) =henae T (£m2)", (21)
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Moliere Projected FunctioAl(1) Moliere Projected Functionl(6)
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Figure 5: Error evaluatiomllgl) (left) andAIl(DG)
(right) vs the division rate in derivation of Moliére
series function for projected angular distribution.
Our calculations (dots) agree well with Takahasi-
Mori predictions (lines).

with the characteristic functio®(z) of Eq. (10),
or its approximation (8). The path of complex in-
tegration is taken as a straight line parallel to the
real axis with positive imaginary componen
and real component fromo to 0, a straight line on
the imaginary axis froniy, to —iyg, and a straight
line parallel to the real axis with negative imagi-
nary component-y, and real component from 0
to oo, as shown in Fig. 4.

Taking accounty(z) is odd and®(z) falls ex-
tremely rapidly at positions far from the real axis,
AI™ can be evaluated as

n)__1 [ Yot D(2) L2\ ™
Arl Lﬁfyoi%lz ZnT T)
—my/h

oo 42 P
fo <T> Wydy}

p=n
%‘BQ7L+2‘(1H2}_2")""(}27)—2n,2’ (22)

where B,, denotes Bernoulli number [9]. The
results of AI(™) are indicated in Fig. 6 fon of 1
and 6.

L2
zJo(¥z)e” T(% In

~

D™ | an
Znl | dp™

~

Conclusions and discussions

We have evaluated Moliere series functions by nu-
merical functional transforms up t6-th higher
terms for both spatial and projected angular distri-
butions. The results have agreed very well with
those derived by analytical method [8] and An-
dreo et als [6], and convergences of our numer-
ical functional transforms are confirmed by Taka-
hasi and Mori theory of error evaluation [7].
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Figure 6: Error evaluatiol\ /(") (left) and AI(®)
(right) vs the division rate in derivation of Molier
series function for spatial angular distribution. O
calculations (dots) agree well with Takahasi-Mc
predictions (lines).

These results will prove reliability of numeric:
functional transforms applied in particle transps
problems, as well as efficiencies of Takahasi-M
theory in these problems.
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