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Abstract: General higher terms of Malre series are solved analytically, in Mak-Heisenberg definite
integral and/or Goldstein series. The terms of higher ardpito n=6 are practically obtained. Applicable
region of Moliere series is extended to shorter depths of penetration dovth = 5 by the results.
Integrated Molere angular distribution is also obtained using generabl&eln series, which will be
useful for rapid sampling of the Mare angular distribution.

Introduction 6 [5]. The coefficientf (™ (9) is determined as

4 4
indicated the analytical solutions for the first three ] N ] ) )
series terms up to the second higher order of accu-LKewise, probability density of the projected a
racy, by applying superior complex function theo- 9ular distributionfr ()d¢ is expressed as

ries with advices of Heisenberg [2]. We propose
analytical solutions for the general higher expan-
sion term of Molére series both for the spatial and
the projected Mokre distributions, in Moére def-
inite integral and Goldstein series [3].

o0 2 2\ "
Moliere formulated the accurate theory of multiple  ¢(n) (9) = l/ ydyjo(gy)e—é (y_ In y_>
Coulomb scattering in power series [1, 2, 3] and n! Jo

fo(e) = @+B 11 () +B 2P (0) ..., (3)

where the coefficienf}(,”)(gp) is determined as
(n) P oo _ ﬁ 42 2 n
b (9= fo dy cos(py)e” 4 (T In T) 4)

Moliere’s solution for the angular dis-  Moliere described the coefficient™ (9) and

tribution by series expansion fr(p) for generak in complex integral as
According to Molere’s theory [1, 2, 3], probability M) = i'/ dée=8¢m x
density of the spatial angular distributigi()ddd nJo
. . . 1 n 2
is expressed with power series Bf ! by %/ nn+16(l;7+ y [lng 3 m} e (5)
F0) = FO@)+B7 O @)+ B @)+, o2

1) p (p) = W/ dge4€" x
where B~ is determined from the probability of ‘ 0 .
the scarce large-angle scattering [4] ahds the L/ dn [ln n_ m} 6_%(6)
deflection angle measured in Mele’s scale angle 2mi Jo " HIVT+n €

but indicated the explicit expressions only up
n = 2 using the normal distribution, the expone
tial integral, and a definite integral [2, 3].
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Table 1: Value of, M.

nmj 0 1 2 3 1 5
1 1
2 2 -1.84557
3 3 -7.53671 -4.28464
4 4 -18.0734 -9.60186 41.9884
5 5 -34.1224 -5.93123 219.544 -150.143
6 6 -56.1835 22.2599 664.563 -1120.4 169.714
Table 2: Value of, _1C;_1.
2 2
n\ j 0 1 2 3 4 5 6
T
1 - 1
2
3 3
2 - - 1
8 2
5 15 5
3 = = = 1
16 8 4
35 35 35 7
4 —_— — — — 1
128 16 8 2
63 315 105 63 9
5 — — — - 1
256 128 16 8 2
6 231 693 1155 231 99 11 1
1024 256 128 16 8 2

The solution for general terms of
Moli ere series

We find the explicit expressions of Egs. (5) and (6)
to carry out the complex integrals by the real inte-
gration.

Modifying the integral variable by —
n) as Moliere did [2], we have

t=1/(1+

(n) _ 4 Cen€ ( —t)"

= / deee 7{ A+l
« gto? Doon C(ln_)( meyi (7)

nol

1<>n>(t,0) - \/%“’fooodgeiggn% fdt(17t:3+1 2
XS (e @)

where the complex integral with are performed
along a closed path surrounding- 0 andt = 1.

Integrals with¢ are evaluated as

/ e S gy =T D (4 1), (9)
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Figure 1: Situation ojff P

=1In ;1 ua + 1.
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Next we evaluate a complex integral of

Eszff { _a} o

against general functions ¢f(s) forn > 1. We

(10)

have
n
1 P du
T, = %%dsf(s)[/a s—u]
B
= /dul/ dus - - /dun
g 09
k: 1
where
itk
= . 12
ak E[Uk_uj (12)

Then, for a functionf(s) to have poles within &
certain area, the Cauchy integral enclosing the ¢
is evaluated as [6]

f(s)

s —Z

——ds = f(z ), (13)

)=> PP = f(

pole

27

where PP denotes the principal part or the tet
with negative power for poles in the area. Also\
have

L

where the signt is determined by the mutual re
lation between the location; and the path ofi,
from « to 8 on the complex plane, as indicated
Figs. 1 and 2. So

d
ului =[In(u;— uz)]zz g—ln e Yifrz

(14)

1 A t—a "
T, = — In——— + i
2mi J,, {( 51 +m)
(it ) Fr(t)dt
8-t
u
° U9
a &
B _dusg U —o .
Figure 2: Situation of | =2~ = In gi=® — mi.
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Figure 3: Molere series functiorf(™ () with n
from 3 to 6, for spatial angular distribution.
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Figure 4: Molere series functionfé”)(go) with n
from 3 to 6, for projected angular distribution.

Goldstein series and the integrated
Moli ere angular distribution

Goldstein proposed another expression of the
lution for the term ofn, = 2 [3]. We apply his

where[z] denotes the largest integer not exceeding method to general higher Mélie terms.

x.

So we have the solution for general terms of
Moliere series, expressed explicitly by definite in-

tegrals in the real space:

2T (n+1) & (—92)
I'(n+1) ;}ncj J!

1 *
_9? (=1 p2
+ 2e /0 { T e

™) = 2

n—1 n—1—j
XZj:o nM; (ln ﬁ) dt (16)
2 )
(n) — 2e=22 1M (ng1)n (—p2)d
(¥) = e\/; T(n¥1) j=0 nfécj—% Edl

_02 1 _1 *
i 2% (1 — t)n 2 6Lp2t
v Jo e

XZ;ZOI WMj(In )" ar (A7)
where
M En0j+1(_)j
[5/2] -
rU=28)(n +1
X j+102k+1ﬁ(—7r2)k(18)
k=0

Moliére series up t@ = 6 so obtained are con-

firmed to extend the reliable region of the series to

shorter passages down= 5.
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Puttingz = 92 andy = (2, we have

11—t "
{( tn+1) ea:t}
— 1 - C (_t)k = lxltl
G D 2 I
k=0 l=n+1-k

( )kxn-i-l—&-l—k

= 21 Oy

o 49

o0

1 < 1
k 141
R | n—3Cr(=t) > Yt

k=0 I=n+1—k

( )kyn+l+17k
= t -~ 27 (20
; Z”‘l n+1+1- )!’( )

so definite integrald,, and J,, in Egs. (16) and
(17), respectively, can be expressed in power se
as

n+l+17k

2O Y

=

I,

n—1

X Z Quj nMp_1_;
ZG Z . Yk gntiH1-k
In k

+z+1 Ik

(21)
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0 k e n+l+1—k
Jo o= Y ..iC 7
n—1
XZQl]TL n—1—j
n+1+1 _
(_) yn+l+1 k
- zalnz Y i iy
P (n+l+1—-k)!
(22)
where

1 n J
Qi) E/ # (ln—) dt, and(23)

n—1
Gin=_ Qi nMn_1-;. (24)
=0

We can easily integrate the spatial Mok angular
distribution (1), utilizing the result. Defining

/fﬁdﬁ—/f

= FOW+BTFO@)+B2F® (9)+...,
(25)

we haveF (™) (¥) forn > 1 as

(™) (ny1) —o n 2k n ;
F (9)= T(nt1) © IZ}C=1WZJ'=}¢ nCj (=)’
e oo ntl+l gk xnblbl—k
te 1=0 G2 pmyyn FT Z C;(=)7 (26)

The results fom = 0, 1, and 2 are practically ex-
pressed as

FO@W = e, 7)
F(l)(ﬂ) = {771+j;£ —em;é7$dm}ze_m
= e "—1+{E;(z)—Inz}ze” " (28)
F® @) = {wl(3)+’¢(3)2}{%—1}2671
S A U B Bl ©)
* Z T
{%*%}’ (29)

as indicated in Fig. 5.

Conclusions and discussions

Higher expansion terms of Maie series are
solved generally in analytical form both with the
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Figure 5: Integrated Madire termsF(9) () (solid
line), F(U () (broken line), andF®) (¥) (dot
line).

definite integral and the series expansion. The
mula for Cauchy integral with functions posse:
ing poles in the closed path of integration [6] w
valuable to get the solution. Integrated functio
of Moliere distribution were proposed in pow
series, which could realize rapid samplings
Moliere’s angular and lateral distributions throu
the Newton method.

References

[1] G. Moliere, Z. Naturforsch2a, 133(1947).

[2] G. Moliere, Z. Naturforsch3a, 78(1948).

[3] H.A. Bethe, Phys. Re89, 1256(1953).

[4] T. Nakatsuka, Proc. of the 28th ICRC,
Tsukubag3, 1491(2003).

[5] T. Nakatsuka,Proc. of the 26th ICRC, Salt
Lake City,1, 486(1999).

[6] T. Nakatsuka, Phys. Rel235, 210(1987).



