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Abstract: The chemical composition of Ultra-High-Energy (UHE) comic rays is oneof unsolved ques-
tions, and its study will provide us for the information on the origin and the acceleration mechanism
of UHE cosmic rays. Especially, a detection of UHE gamma-rays by hybrid experiments , e.g. Auger
and Telescope array experiments, will be a key to solve these questions.The characteristics of UHE
gamma-ray showers have been studied on lateral and longitudinal structure by AIRES and our own sim-
ulation code, so far. There are differences in a slope of lateral distribution (η) and a depth of shower
maximum (Xmax) between gamma-ray and proton induced showers because UHE gamma-ray showers
are affected by the LPM effect and the geomagnetic cascading process in an energy region of> 1019.5eV.
Different features between gamma-ray and proton showers are pointed out from the simulation study and
an identifiability of gamma-ray showers from proton ones is also discussed by the method of Neural-
Network-Analysis.

Introduction

In an energy spectrum of>1019eV, the GZK cutoff
[1] [2] has been predicted to be few cosmic ray flux
above 1020eV. However, AGASA had observed
11 events with energies well beyond 1020eV [3].
There are several acceleration models to produce
UHE gamma-rays and neutrinos with such a huge
energy. Z-burst model predicts that UHE gamma-
rays are produced as secondary particles through
an interaction between UHE neutrino and cosmic
neutrino background. GZK gamma-rays are also
expected as a secondary component in GZK pro-
cess. As the top-down scenario, the decay process
of Super Heavy Relic, topological defects, i.e. cos-
mic string, monopole, etc., are candidates of UHE
cosmic ray origin.

Air showers initiated by UHE gamma-rays have
characteristic profiles in comparison with hadronic
showers. An influence of the LPM effect [4] [5] on
shower structures leads to a significant elongation
of electromagnetic cascading and a large fluctua-
tion of shower developments at an energy region
above 1019.5eV. On the other hand, once electron-
positron pair is produced in UHE gamma-ray in-
teraction with the geomagnetic field away from the

Earth’s surface, it initiates an electromagnetic cas-
cading before entering the atmosphere [6]. As a re-
sult, an energy of “primary gamma-ray” is shared
by a bunch of lower energy “secondary gamma-
rays”. Therefore, an influence of the LPM effect
on subsequent showers is significantly weakened
in the atmosphere. An effect of the geomagnetic
cascading on shower structures strongly depends
on arrival direction and gamma-ray energy above
1019.5eV [7]. In the present work, both a slope of
lateral distribution(η) and a depth of shower max-
imum(Xmax) are used as observables to estimate
for an identifiability of UHE gamma-ray showers
from proton ones.

Simulation

The atmospheric air shower simulation has been
carried out by AIRES code (Ver.2.6.0) [8] for pri-
mary proton and gamma-ray showers. Individual
longitudinal and lateral structure were fitted by the
Gaisser-Hillas formula with 3 parameters1, and by

1. N(x) = a1
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the modified NKG function with 2 parameters2,
respectively. Here,a2 was defined as a slope of
lateral distribution (η) in the following discussion.
Atmospheric showers of proton and gamma-ray
primaries have been generated in an energy region
of 1017eV-1021eV with∆log(energy)=0.1 step and
zenith angles of 0, 20, 30, 45, 60, 75◦. 100 events
for each combination of an energy and a zenith an-
gle were simulated, and fitted parameters of lat-
eral and longitudinal structure were accumulated
in a library. To simulate showers initiated by UHE
gamma-rays, we calculated the geomagnetic cas-
cading starting with a single UHE gamma-ray far
away from the Earth’s surface down to the top of
the atmosphere by own simulation code (the loca-
tion in Utah TA site was assumed in this calcu-
lation). Secondary particles that reached the top
of the atmosphere were set as an input compo-
nent for the calculation of atmospheric shower. At-
mospheric gamma-ray shower was constructed as
a superposition of lower energy gamma-ray sub-
showers which were recorded in a library men-
tioned above.

Results and Discussion

Characteristics of UHE gamma-ray shower
structure

Figure 1 (top) shows Xmax distributions for pro-
ton showers and gamma-ray showers with the ge-
omagnetic cascading process “ON”. Primary ener-
gies above 1019.6eV were sampled from a power
law energy spectrum with an index of -2.7. A
zenith angle of 45◦ was assumed and an azimuthal
angle was assigned randomly in 0◦ -360◦. When
the geomagnetic cascading process is taken into
account as a reasonable assumption, atmospheric
gamma-ray showers tend to have smaller Xmax
with a smaller fluctuation. Therefore Xmax distri-
bution of gamma-ray showers approaches near to
a region of proton showers and partly overlapped
each other. A longer tail in Xmax distribution of
gamma-ray showers could be found. It consists of
gamma-ray showers affected by the LPM effect,
being superior to the geomagnetic cascading pro-
cess. Figure 1 (bottom) showsη distributions for
proton and gamma-ray showers too. The effects
of LPM and geomagnetic cascading process also
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Figure 1: Distributions of Xmax (top) andη (bot-
tom) for proton and gamma-ray showers of E>

1019.6eV and 45◦ with the geomagnetic cascading
process “ON”.

contribute to gamma-ray showers, just as the case
of Xmax distribution.

Neural-Network-Analysis

An identifiability of gamma-ray/proton showers
has been studied with the method of Neural-
Network-Analysis(NNA). The used network con-
sists of the input, middle and output layer. Three
parameters of longitudinal structure, two parame-
ters of lateral structure, a primary energy, a zenith
and an azimuthal angle were given into the first
layer. Firstly, the network studied on longitudi-
nal and lateral features of simulated proton and
gamma-ray showers(10000 events each) with ener-
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Figure 2: Misidentified ratios of proton showers as
a function of primary energy for zenith angles of
45◦ and 60◦.

gies sampled with a power law of -2.7 and a zenith
angle of 45◦, in order to quantify the combination
weights among the layers, by the back propagation
method. A set of convergent weights was applied
for event identification test. Other datasets of pro-
ton and gamma-ray showers (10000 events each)
have been tested by NN algorithm and resulting
output values from the last layer were evaluated
to estimate for a degree of reality of identification.
Output values are in a range of 0.0-1.0. Events with
0.0 and 1.0 show the most likely gamma-ray and
proton shower candidates, respectively, and an in-
termediate value shows a degree of uncertainty of
particle identification.

When an output of 0.5 is assumed as a judging
standard value for an identification between pro-
ton and gamma-ray shower, a few proton events
with <0.5 and gamma-ray events with>0.5 could
be seen as misidentified fake events. A correct an-
swer ratio of tested proton and gamma-ray showers
was 97.2% from this calculation.

To examine UHE gamma-ray flux or an assessed
reliability of a flux limit, a study of misidenti-
fied ratio of proton showers is essentially impor-
tant. Figure 2 shows misidentified ratios of pro-
ton showers with zenith angles of 45◦ and 60◦.
Both misidentified ratios of proton showers in-
crease quickly upto 1019.8eV, and then they be-
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Figure 3: Ratios of showers identified as gamma-
rays by NNA. Different gamma-ray fluxes be-
tween 0% and 50% are assumed as a ratio to the
total flux.

come to be smaller above 1019.8eV because UHE
gamma-ray shower profiles become to be simi-
lar with ones of proton showers due to the ef-
fect of geomagnetic cascading process. Typically,
misidentified ratios of 7% and 12% are seen for
proton showers of 1020eV and zenith angles of 45◦

and 60◦, respectively. The stronger effect of geo-
magnetic cascading process for inclined gamma-
rays(60◦) gives a larger misidentified ratios. To es-
timate for an ability of NNA identification, we as-
sumed for two components of protons and gamma-
rays as primary composition with different ratios
of gamma-rays between 0% and 50% in all pri-
maries. In figure 3 ratios of showers identified as
gamma-rays by NNA are shown as a function of
primary energy. Each plot is also shown in cases
of different gamma-ray fluxes to the total flux. Ra-
tios of showers identified as gamma-rays for three
different energy regions are shown in figure 4, as
a function of assumed gamma-ray flux. If a 10%
gamma-ray flux in all observed events is judged
by NNA identification test, its significance of es-
timated gamma-ray flux depends on the statistics.
More than 100 observed events in any energy re-
gions will be required to set a>3σ confidence by
current and planed experiment.
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Figure 4: Relation between ratio of showers iden-
tified as gamma-rays and true gamma-ray ratio in
the total flux, for three different energy regions.

The NNA is one of the powerful methods to esti-
mate for an UHE gamma-ray flux getting behind
proton primary pool. A study is in progress to in-
crease a reliability of identification with an addi-
tional observable of the time structure of shower
particles and with experimental uncertainties of
Xmax andη.
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