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Abstract: Two separate statistical tests are described and developed in orderun-tganed data sets
for adherence to the power-law form. The first test employs the Ti3tataa function defined to deviate
from zero when the sample deviates from the power-law form, regardiehe value of the power index.
The second test employs a likelihood ratio test to reject a power-law bagkd in favor of a model
signal distribution with a cut-off.

Introduction and Formalism Analytically we find,
The question of whether the cosmic ray energy —— <1nn ( x >> — n! ) 2)
spectrum exhibits a cut-off at the very highest en- Tmin ) [ x (Y= 1)"

ergies is of central interest to the cosmic ray (CR)
physics[1, 2]. The flux of CR’s at these ener-
gies is very small - about/km? steradian cen- N
tury - and, therefore, statistical analysis techniques (X)) = ; Zlnn <
which clearly quantify ones knowledge of flux sup- N-@G-1 i=j
pression are useful. In this note we apply the statis-

tics first developed for binned CR data sets in [3] N €9.3 we denote the sorted (from least to gre
to an un-binned analysis. We also introduce a new €st) data set agX 1), X (2, ..., X(x) }- To apply
test based on a likelihood ratio test and show that these statistics to an un-binned data set we ca
both statistics can quantify our knowledge of a flux 1ate,, (X)) for each minimumx;,.
suppression. We also study a toy p.d.f. which is designed
We first establish the mathematical foundations of MimMic a power-law up to a certain energy but th
the analysis. The CR flux follows a power-law €xhibit a sharp “Fermi-Dirac like” cut-off abow:
for over 10 orders of magnitude. The fundamen- that energy[3]. We follow the parameterizatic
tal probability distribution function (p.d.f.) gov- usedin[3],

erning the power-law assumption (normalized such

that <>X = f;ji" Ix (1‘; Tmin, V)dx = 1) is .fFD(x; Lcy We, ’Y) =

For a given sample we use,

X
X(>>. 3)
)

Bzxz™7
14+ exp (logmflog Te

We

, (4)
)

fx(x§mmin57) :Ax_’y7 (1)
) where B is chosen such thaf., is normalized
whereA = (y — 1)z, and the parametey is over the interva|z,,in, 00), i.€. () pp = 1.
referred to as thepectral index.

The n!* raw moment of this distribution : :
diverges[4] forn > 2 with v < 3. Alterna- Binned vs Un-binned Spectral-Index

tively, the expected value dfi(x/z,,;,) is better Estimators

behaved and offers a crucial result of this analysis.
Under the power-law assumption, we can take

log of both sides of eq.1 to yieldg fx = log((y—
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Figure 1: Estimates of the redlog-binneg,j and
the blackun-binnedi(,;). for 10°> Monte-Carlo tri-
als. For each trail we drav = 3500 events from
a power-law withy = 2.75.

1)/Tmin) — vlog(x/xmin). The slopedy, of the
line which results in the minimum? fit to the
logarithmically binned (“LB") histogram of a par-
ticular data. The un-binned maximum likelihood

(“ub”) estimate of the spectral index can be found

analytically[4]:
Fub(X () =1+ 1/01(X (). (5)

This estimator is within 1% of the truefor N100

and it is asymptotically unbiased. The variance

of this estimator is within 1% of the Cramer-Rao
lower bound, given by s > (v — 1)/v/N, for[6]
N100. As derived in [7], we write the asymptotic
p.d.f. of Yup as fu, (Yub; NV, y)-

To illustrate the benefits of using un-binned estima-

tors 105 Monte-Carlo trials were conducted. For
each trail we drawN = 3500 events from a power-
law with v = 2.75 (z,,;» = 1) and calculatey,

and4,,. These numbers are chosen to be approx-

imately consistent with the flux reported[8] by the

Auger Collaboration at ICRC 2005, as studied in

[3]. In Figure 1 we plot histograms of these esti-
mators and we note that the analytic predictign (

is not a “fit") represents a good approximation for
the distribution ofy;,. The mean (over the trials)
of 43 is 2.76 with deviation0.045 while the corre-
sponding values fot,,;, are2.75 and0.030, verify-

ing thaty,,;, has smaller error and less bias[9] than

A1p. Since we use
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TP-statistic

We define the TP-statistic to be,
vi—1/2=0

T = (6)
. . 1.

H(Xy) = H(XG) - (X)) (@)
The utility of using this statistic comes from tr
fact[10] that eq.6 is zero and thus, eq.7 will tend
zero asN — oo, regardless of the value of

We may approximate the asymptotic joint di
tribution of ;4 and 7, as a bivariate Gaussia
fuviv, (1, 72) with known means, variances ar
correlation coefficient[7]. Thus, for a gives and
~, we calculate the p.d.f. af to be,

fre(TiN,v) = /jc Forv, (8, 2(8% — 7))dt. (8)

The analytic “location” (1), and “shape”
(0:-)rp = \/(T2)rp — (T)2, parameters of this
distribution are consistent with simulation gen
ated values. Since the numeric integration
quired to calculate these quantities can be car
out faster than the requisite simulations we use
former to estimate the expected mean and varia
of the power-law sample TP-statistic.

We estimate the significance of the TP-statistic
a given sample as
(7 = (T)rp)/{0r)rp- 9)
A spectrum with flux suppression in the tail (lik
that in eq.4) will result in gositive significance[3].
We note from [7] thalo, ), ~ N~V/2(y —1)72,
In Figure 2 we illustrate the behavior of this stati
tic when applied to a distribution with suppressi
in the tail. Using eq. 4 we analytically calct
late 4,p = 1 + (In(x/Zmimn)) o (lower left) and
7 = (In(x/Tmin))3p — 0-5<1H2($/$mm)>pp (up-
per right) withy = 2.75, logz. = 1.0, for three
choices ofw, and as a function of,,;,. We
also calculate the expected value (and deviati
of these quantities when applied to a data set ¢
taining 3500 events, drawn from pure power-law
with values greater thah0 For eache,,;, we es-
timate the number of evenf§ with value greater
than z,,,;, as 3500z 7. The upper left pane
shows the p.d.f’s (on a log-log scale) normaliz
to unity on[1.0,c0). The lower right contains the
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Figure 2: The TP-statistic is sensitive to flux suppressiorifese toy distributions, see text for explanatic

significance of the TP-statistic; for the lowest;,,
(i.e. N = 3500) the model cut-off distributions can
reject the power-law assumption at the4o con-
fidence level.

A Likelihood Ratio Test

Here we introduce a likelihood ratio test designed

to discriminate a model signal (power-law with a

cut) from a background (pure power-law) hypoth-

esis and to be weakly dependent on We may
write the natural log of the ratio of the signal likeli-
hoodL,, =[] fr»o(z;) to that of the background

Ly = fo(xz) as,
R(’Ya log xmwc) = Nln {C('leog xmwc)}

N logx — log x
Zln{l + exp <ggc> } (10)
We

i=1

We note thatC’ = B/A (see egs. 4 and 1) contains
the only dependence onand is independent of the
data points under study, i.& contains no term in-
volving log z; 7. Indeed, for any givetog z. and
we, the quantityln C' is linearly dependent on
with slope~ 0.125. In this sense the ratio test is
weakly dependent of. However, in order to eval-

uate the efficiency of this test to reject a particular

power-law background in favor of the cut-off si
nal we must choose a priori.

To illustrate how this test could be applied to a C
data set we genera8500 “toy” events from f,
with input parametery = 2.75, logz. = 1 and
w. = 0.1 (see Figure 3). With the a priori choic
of v = 2.75, we then calculaté(2.75, log =, w,)
by scanning over the range$3 < w, < 0.17 and
0.93 < logz. < 1.07. The maximumn R,,, =
81.83 gives us the fit parameter estimateg ..
0.97 +0.04 andw, = 0.10 4+ 0.03, where the568%
confidence interval is approximated by the contc
In Rypar — In R(2.75, log ., w.) = 2.30/2.

By simulating/V,,, = 10* sets 0f3500 background
events drawn from g@ure power law (with v =
2.75) and performing the same parameter scan ¢
log x. andw,, we can estimate the efficiengyof
this test to reject the power-law in favor the toy ct
off model, i.e.8 ~ Nin R>1n Ronen /Nog. From the
right panel of Figure 3 we note that none of tl
10* background sets have R > In R,,,4..; We can
reject the power-law in favor of the model cut-c
at the~ 40 confidence level.

When applying this test to a real CR data sa$
not known a priori and one would want to estime
it. Studies of the ratio test with this extra degree
freedom are currently underway.
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Figure 3: The ratio test is sensitive to flux suppressionta MC set, see text for explanation.

Conclusions

We began this note by verifying that the log-binned
spectral index estimator has more bias and a larger
error than the un-binned (maximum likelihood) es-
timator. We then detailed two un-binned statistical
tests sensitive to flux suppression. We show that
both tests show high sensitivity for rejecting the
power-law hypothesis in favor of a toy flux sup-
pression model and depend only weakly on the true
spectral index. Applying these tests300 events
drawn from a toy cut-off distribution (see eq. 4)
we can reject the power-law model in favor of the
cut-off model at a confidence level 4 standard
deviations.
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