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1University of New Mexico, Albuquerque, New Mexico USA
jhague@unm.edu

Abstract: Two separate statistical tests are described and developed in order to testun-binned data sets
for adherence to the power-law form. The first test employs the TP-statistic, a function defined to deviate
from zero when the sample deviates from the power-law form, regardless of the value of the power index.
The second test employs a likelihood ratio test to reject a power-law background in favor of a model
signal distribution with a cut-off.

Introduction and Formalism

The question of whether the cosmic ray energy
spectrum exhibits a cut-off at the very highest en-
ergies is of central interest to the cosmic ray (CR)
physics[1, 2]. The flux of CR’s at these ener-
gies is very small - about3/km2 steradian cen-
tury - and, therefore, statistical analysis techniques
which clearly quantify ones knowledge of flux sup-
pression are useful. In this note we apply the statis-
tics first developed for binned CR data sets in [3]
to an un-binned analysis. We also introduce a new
test based on a likelihood ratio test and show that
both statistics can quantify our knowledge of a flux
suppression.

We first establish the mathematical foundations of
the analysis. The CR flux follows a power-law
for over 10 orders of magnitude. The fundamen-
tal probability distribution function (p.d.f.) gov-
erning the power-law assumption (normalized such
that〈〉X ≡

∫∞

xmin

fX(x;xmin, γ)dx = 1) is

fX(x;xmin, γ) = Ax−γ , (1)

whereA = (γ − 1)xγ−1
min and the parameterγ is

referred to as thespectral index.

The nth raw moment of this distribution
diverges[4] forn ≥ 2 with γ ≤ 3. Alterna-
tively, the expected value ofln(x/xmin) is better
behaved and offers a crucial result of this analysis.

Analytically we find,

νn ≡
〈

lnn

(

x

xmin

)〉

X

=
n!

(γ − 1)n
. (2)

For a given sample we use,

ν̂n(X(j)) ≡
1

N − (j − 1)

N
∑

i=j

lnn

(

X(i)

X(j)

)

. (3)

In eq.3 we denote the sorted (from least to great-
est) data set as

{

X(1),X(2), . . . ,X(N)

}

. To apply
these statistics to an un-binned data set we calcu-
late ν̂n(X(j)) for each minimumX(j).

We also study a toy p.d.f. which is designed to
mimic a power-law up to a certain energy but then
exhibit a sharp “Fermi-Dirac like” cut-off above
that energy[3]. We follow the parameterization
used in [5],

fF D(x;xc, wc, γ) =
B x−γ

1 + exp
(

log x−log xc

wc

) , (4)

whereB is chosen such thatfF D is normalized
over the interval[xmin,∞), i.e. 〈〉F D = 1.

Binned vs Un-binned Spectral-Index
Estimators

Under the power-law assumption, we can take the
log of both sides of eq.1 to yieldlog fX = log((γ−
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THE COSMIC RAY ENERGY SPECTRUM
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Figure 1: Estimates of the redlog-binned (γ̂lb) and
the blackun-binned (̂γub). for 105 Monte-Carlo tri-
als. For each trail we drawN = 3500 events from
a power-law withγ = 2.75.

1)/xmin) − γ log(x/xmin). The slope,̂γlb, of the
line which results in the minimumχ2 fit to the
logarithmically binned (“LB”) histogram of a par-
ticular data. The un-binned maximum likelihood
(“ub”) estimate of the spectral index can be found
analytically[4]:

γ̂ub(X(j)) = 1 + 1/ν̂1(X(j)). (5)

This estimator is within 1% of the trueγ for N100
and it is asymptotically unbiased. The variance
of this estimator is within 1% of the Cramer-Rao
lower bound, given byσγ̂ ≥ (γ − 1)/

√
N , for[6]

N100. As derived in [7], we write the asymptotic
p.d.f. of γ̂ub asfub(γub;N, γ).

To illustrate the benefits of using un-binned estima-
tors 105 Monte-Carlo trials were conducted. For
each trail we drawN = 3500 events from a power-
law with γ = 2.75 (xmin = 1) and calculatêγlb

andγ̂ub. These numbers are chosen to be approx-
imately consistent with the flux reported[8] by the
Auger Collaboration at ICRC 2005, as studied in
[3]. In Figure 1 we plot histograms of these esti-
mators and we note that the analytic prediction (fub

is not a “fit”) represents a good approximation for
the distribution ofγ̂lb. The mean (over the trials)
of γ̂lb is 2.76 with deviation0.045 while the corre-
sponding values for̂γub are2.75 and0.030, verify-
ing thatγ̂ub has smaller error and less bias[9] than
γ̂lb. Since we use

TP-statistic

We define the TP-statistic to be,

τ = ν2
1 − ν2/2 = 0 (6)

τ̂(X(j)) = ν̂2
1(X(j))−

1

2
ν̂2(X(j)). (7)

The utility of using this statistic comes from the
fact[10] that eq.6 is zero and thus, eq.7 will tend to
zero asN →∞, regardless of the value ofγ.

We may approximate the asymptotic joint dis-
tribution of ν̂1 and ν̂2 as a bivariate Gaussian
fV1V2

(ν1, ν2) with known means, variances and
correlation coefficient[7]. Thus, for a givenN and
γ, we calculate the p.d.f. ofτ to be,

fT P (τ ;N, γ) =

∫ ∞

−∞

fV1V2
(t, 2(t2 − τ))dt. (8)

The analytic “location” 〈τ〉T P and “shape”
〈στ 〉T P =

√

〈τ2〉T P − 〈τ〉2T P
parameters of this

distribution are consistent with simulation gener-
ated values. Since the numeric integration re-
quired to calculate these quantities can be carried
out faster than the requisite simulations we use the
former to estimate the expected mean and variance
of the power-law sample TP-statistic.

We estimate the significance of the TP-statistic for
a given sample as

(τ̂ − 〈τ〉T P )/〈στ 〉T P . (9)

A spectrum with flux suppression in the tail (like
that in eq.4) will result in apositive significance[3].
We note from [7] that〈στ 〉T P ∼ N−1/2(γ − 1)−2.

In Figure 2 we illustrate the behavior of this statis-
tic when applied to a distribution with suppression
in the tail. Using eq. 4 we analytically calcu-
late γ̂ub = 1 + 〈ln(x/xmin)〉F D (lower left) and
τ = 〈ln(x/xmin)〉2

F D
− 0.5〈ln2(x/xmin)〉F D (up-

per right) withγ = 2.75, log xc = 1.0, for three
choices ofwc and as a function ofxmin. We
also calculate the expected value (and deviation)
of these quantities when applied to a data set con-
taining3500 events, drawn from apure power-law
with values greater than1.0 For eachxmin we es-
timate the number of eventsN with value greater
than xmin as 3500x1−γ

min. The upper left panel
shows the p.d.f.’s (on a log-log scale) normalized
to unity on[1.0,∞). The lower right contains the
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Figure 2: The TP-statistic is sensitive to flux suppression for these toy distributions, see text for explanation.

significance of the TP-statistic; for the lowestxmin

(i.e. N = 3500) the model cut-off distributions can
reject the power-law assumption at the∼ 4σ con-
fidence level.

A Likelihood Ratio Test

Here we introduce a likelihood ratio test designed
to discriminate a model signal (power-law with a
cut) from a background (pure power-law) hypoth-
esis and to be weakly dependent onγ. We may
write the natural log of the ratio of the signal likeli-
hoodLF D =

∏

fF D(xi) to that of the background
LX =

∏

fX(xi) as,

R(γ, log xc, wc) = N ln {C(γ, log xc, wc)}

−
N

∑

i=1

ln

{

1 + exp

(

log x− log xc

wc

)}

.(10)

We note thatC = B/A (see eqs. 4 and 1) contains
the only dependence onγ and is independent of the
data points under study, i.e.R contains no term in-
volving log x−γ

i . Indeed, for any givenlog xc and
wc, the quantitylnC is linearly dependent onγ
with slope∼ 0.125. In this sense the ratio test is
weakly dependent onγ. However, in order to eval-
uate the efficiency of this test to reject a particular

power-law background in favor of the cut-off sig-
nal we must chooseγ a priori.

To illustrate how this test could be applied to a CR
data set we generate3500 “toy” events fromfF D

with input parametersγ = 2.75, log xc = 1 and
wc = 0.1 (see Figure 3). With the a priori choice
of γ = 2.75, we then calculateR(2.75, log xc, wc)
by scanning over the ranges0.03 ≤ wc ≤ 0.17 and
0.93 ≤ log xc ≤ 1.07. The maximumlnRmax =
81.83 gives us the fit parameter estimateslog x̂c =
0.97± 0.04 andŵc = 0.10± 0.03, where the68%
confidence interval is approximated by the contour
lnRmax − lnR(2.75, log xc, wc) = 2.30/2.

By simulatingNbg = 104 sets of3500 background
events drawn from apure power law (with γ =
2.75) and performing the same parameter scan over
log xc andwc, we can estimate the efficiencyβ of
this test to reject the power-law in favor the toy cut-
off model, i.e.β ∼ Nln R≥ln Rmax

/Nbg. From the
right panel of Figure 3 we note that none of the
104 background sets havelnR ≥ lnRmax; we can
reject the power-law in favor of the model cut-off
at the∼ 4σ confidence level.

When applying this test to a real CR data setγ is
not known a priori and one would want to estimate
it. Studies of the ratio test with this extra degree of
freedom are currently underway.
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Figure 3: The ratio test is sensitive to flux suppression for this MC set, see text for explanation.

Conclusions

We began this note by verifying that the log-binned
spectral index estimator has more bias and a larger
error than the un-binned (maximum likelihood) es-
timator. We then detailed two un-binned statistical
tests sensitive to flux suppression. We show that
both tests show high sensitivity for rejecting the
power-law hypothesis in favor of a toy flux sup-
pression model and depend only weakly on the true
spectral index. Applying these tests to3500 events
drawn from a toy cut-off distribution (see eq. 4)
we can reject the power-law model in favor of the
cut-off model at a confidence level∼ 4 standard
deviations.
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