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Abstract: In the framework of LOPESLO FAR PrototypE Station), aSelf-TriggeredArray of Radio
detectors §T AR) is developed. The challenge of LOPES'® is to provide an independent self-trigger
on radio emission of extensive air showers with primary energies above'” eV.

Measurements are done with an external trigger and self-trigger in iadicand quiet areas. Based on
these data the self-trigger is optimised and higher level triggers are gedelas well as algorithms for
reconstruction of shower observables. The methods and first résuitd OPES 7% are described.

Introduction independent trigger system for radio emission

Ultra High Energy Cosmic Rays (UHECRS) tt
On site of the Forschungszentrum Karlsruhe (FZK) LOPES’" 4 detector was developed. Two a
in a first step 10 and later additional 20 short dipole tenna clusters, each with 4 logarithmically pe
antennas with an inverted V-shape (LOPES30) odic dipole antennas (LPDAs) and two polarisati
with east/west polarisation were installed and trig- channels — east/west & north/south (8 channe
gered by KASCADE [1, 2]. were set up on the site of FZK within the area
To optimise these techniques and to provide an
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while the other is digitised by a 12 bit ADC with

Figure 1. Layout of the KASCADE-Grande and Sampling frequency of 80 MHz and stored in rir

LOPES experiment on site of the Forschungszen- buffers [5, 6]. Additionally, a timestamp from
trum Karlsruhe. GPS clock is stored with the ADC data if an eve
is triggered.

. ) The digitisation of a 40 — 80 MHz bandpass si
the air shower experiment KASCADE-Grande [3] ) with a sampling rate of 80 MHz fulfils the e
(see fig. 1). tended Nyquist Theorem. Thesub-sampled dat:
First self-triggered measurements have shown, have to be up-sampled by a factoto & - n sam-
that Radio Frequency Interferences (RFI) are dom- ples for analysis and reconstruction. For this p
inating the trigger rate. To improve the self-trigger pose the signal is transformed to frequency
concept and to develop higher trigger levels an main, where also the suppression of mono f
external trigger signal from KASCADE-Grande quent RFI RFI suppressionis done. By putting
was provided. LOPEE“4F data are recorded in (k—1) - § zeros in the frequency space v
whenever a coincidence configuration of seven achieve the factok up-sampled spectra in the tirr
KASCADE-Grande stations (blue squares in domain [6, 7].
fig. 1) is registered. This corresponds to an energy
threshold of~ 106 eV and a trigger rate of

~ 50 mHz. Self-Trigger
The trigger rate per channel at each antenna he
] ] be minimised by controlling the data quality. |
Signal Chain a next step, the geometry of the setup is uset

check the coincidence constraint. Therefore,
The pulsed, coherent radio emission of the cosmic position of each antenna in the illustrated clus
ray shower can be observed by antennas when thein fig. 1 is part of a vertex of an equilateral trial
UHECRSs energy and the electric field strength are gle with a base length = 65 m. This geometrical
large enough [4]. The signal of each channel is configuration of three LPDAs provides the coi
raised by a low noise amplifier and transmitted to a cidence constraint for the self-trigger. Most R
40 - 80 MHz bandpass filter. The Radio Frequency sources are located at low elevations. The sigr
(RF) signal is then split. One part can be used as in- propagate dominantly in parallel to the earth’s s
put signal for the self-trigger analogue electronics face. For this RFI background the typical time d
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Figure 3: Shown idength of pulseversusposi-

per event eight entries. If thgignal to noise ra-
tio is > 100 the counted pulses are clearly vis
ble pulses. On the other hand, the expected ni
ber of pulses are low, if more than five puls
are detected the broad band RFI is for this ch
nel too high. The quality per RF channel is d
fined to begoodby the cutsignal to noise ratio>

75 AND number of pulses: 5.

Thelength of pulsesersusposition of pulsef the
accepted RF channels are plotted in fig. 3. F
signals are distributed randomly over the recorc
time window. The maximumlength of pulse
corresponds to the mean length of RFI puls
tmean,RFI= 475 ns at the antenna array. The d

tion of pulseof all channels accepted by the Qual- creasing mean length of pulses for low and hi

ity Cut.

ferencet,,, ., of two antennas iég— < lnaz <
whereh is the height of the triangle andhe speed
of light. For zenith angleg < 60° most of the

values of the recorded time are due to the u:
window function for Fourier transformation. Onl
21,000 events (20%) of the given data sample
accepted for further analysis.

Events with at least two accepted RF channels
the Quality Cut are in the next step checked

cosmic ray events are detected. The adjusted co-coincident signals of all channels in one triang

incidence time) < t. < t,;,4. IS USed to suppress
horizontal background.

Classification

Therefore, the envelope and a dynamic thresk
of each polarisation per antenna are calculated.
The basic idea is to verify all possible coincidenc
of all RF channels of one triangle and to ensure t
at least one RF channel per antenna is incluc

The analysis is based on a 27d dataset triggeredThis also implies a comparison of different pola
externally by KASCADE-Grande (2006-12-12 to sations and reduced broad band RFI in several
2007-01-07) in a four antenna array in the lower channels. The contribution of the signal strengtf
middle of KASCADE-Grande. More than 102,000 each polarisation is given by the geomagnetic

events are recorded with a primary enegy >
106 ev.

RFI suppressiors applied to all RF channels. Four
classification parameters are calculatsitjnal to

gle (angle between shower axis and geomagn
field) but is identical in both polarisations. 2€
events (0.026%) of the given data sample are
cepted by described method. Due to the dyna

noise ratio— The ratio of the peak value and noise threshold per channel this mechanism is able to

in the squared 2048 point sub-sampled datan-
ber of pulses— No. of pulses above a dynami-

tect UHECR events in radio loud environments.
Due to the expectepulse lengthnumber of pulses

cally defined threshold counted on base of the sub- per channel, andetected channefsirther cuts are

sampled datalength of pulse— The width of the

applied to the data to reduce the amount of ba

peak of an envelope in the up-sampled data is cal- ground events. The resulting 12 events are

culated. position of pulse— The position of the

cepted out of 102,000 events. 5 of these eve

peak in the time domain is calculated in the up- are in good agreement with the reconstruc

sampled data.

Strategy

The distribution of thesignal to noise ratioversus
number of pulsess illustrated in fig. 2 and shows
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shower direction by a plane fit compared wi
the reconstructed direction of KASCADE-Grant
(see fig. 4).
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Figure 4: Radio emission of an observed air shower with amggn& =~ 6 - 107 eV (derived
from KASCADE-Grande) is shown and re-detected by the sigfer. The reconstructed direction «
LOPESTAE results to an azimuth angle = 195° and a zenith anglé = 44°, which is in good agree
ment with KASCADE-Grande.
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