Search for neutralino dark matter with the AMANDA neutrino telescope

D. Hubert and A. Davour for the IceCube Collaboration

dhubert@vub.ac.be Vrije Universiteit Brussel, Belgium

Outline

- Indirect detection of dark matter
- The AMANDA neutrino telescope
- Analysis strategy, results and current efforts
 - Earth neutralinos (2001–2003 data)
 - Sun neutralinos (2001 data)
- Conclusion

30th International Cosmic Ray Conference Merida, Yucatan, Mexico, July 3rd – 11th 2007

Neutralino dark matter detection...

Neutralinos

if lightest SUSY particle: stable, weakly interacting, massive (GeV-TeV scale) → possibly main (dark) matter component of Universe

Indirect detection

accumulation in heavy objects (Earth, Sun, Galactic Center) detection through annihilation products

$$\chi \chi \rightarrow \begin{cases} q \overline{q} \\ l^+ l^- \\ W, Z, H \\ \dots \end{cases} \rightarrow \begin{cases} \overline{p}, e^+ \\ \gamma \\ \nu \\ \dots \end{cases}$$
$$(V)$$

3

30th International Cosmic Ray Conference Merida, Yucatan, Mexico, July 3rd – 11th 2007

Daan Hubert for the IceCube Collaboration Vrije Universiteit Brussel, Belgium

...with neutrinos

Sun

Neutralino signal

- rate depends on SUSY parameters
- 50 GeV < M_{γ} < 5000 GeV hard (W^+W^-) & soft ($b\overline{b}$) annihilations
- vertically upward (Earth) ~horizontal (Sun)

Atmospheric background

muons

 $\sim O(10^9)$ events/year downward going

neutrinos

 $\sim O(10^3)$ events/year all directions

30th International Cosmic Ray Conference Merida, Yucatan, Mexico, July 3rd – 11th 2007

Daan Hubert for the IceCube Collaboration Vrije Universiteit Brussel, Belgium

The AMANDA/IceCube neutrino detector

AMANDA-II: 2000-...

- 677 OMs on 19 strings
- diameter ~200m, height ~500m IceCube: 2005-...
- Feb. 2007: 22 strings deployed
- diameter ~1000m, height ~1000m
- incorporates AMANDA-II since 2007
 Neutralino searches
- Earth WIMPs 2001–2003 (prelim. results) 688.0 days, ~5x10⁹ events
- Sun WIMPs 2001 (no low E sensitive trigger) 143.7 days, ~9x10⁸ events
- AMA-Ice3: poster by Gustav Wikström (HE3.3)

30th International Cosmic Ray Conference Merida, Yucatan, Mexico, July 3rd – 11th 2007

IceCube

AMANDA-II

Additional low E trigger

30th International Cosmic Ray Conference Merida, Yucatan, Mexico, July 3rd – 11th 2007

Daan Hubert for the IceCube Collaboration Vrije Universiteit Brussel, Belgium

Neutralino analysis strategy

General analysis

- optimize 6 to 14 neutralino models (3 to 7x mass, 2x channel) separately better sensitivity, especially for low energy models
- blind analysis

subsample data (Earth) or randomize azimuth (Sun)

Filter steps

- 1. reject atmospheric muons ~O(10⁹) direction, reconstruction quality, ...
- 2. reduce atmospheric neutrinos ~O(10³) final search bin
- 3. claim discovery or calculate limits estimate background from MC (Earth) or off-source data (Sun)

30th International Cosmic Ray Conference Merida, Yucatan, Mexico, July 3rd – 11th 2007

Selection efficiencies

Sun – 1-dim cuts and

multi-dim cut, using S/\sqrt{B} criterion

Earth – sequential 1-dim cuts, optimized with soft criterion

30th International Cosmic Ray Conference Merida, Yucatan, Mexico, July 3rd – 11th 2007

Daan Hubert for the IceCube Collaboration Vrije Universiteit Brussel, Belgium

Data consistent with background

30th International Cosmic Ray Conference Merida, Yucatan, Mexico, July 3rd – 11th 2007

Muon flux limit – Earth 2001-2003

Preliminary results

- optimized 6 low E models
- additional trigger lowers E threshold
- x60 improvement for 50 soft!

30th International Cosmic Ray Conference Merida, Yucatan, Mexico, July 3rd – 11th 2007

Muon flux limit – Earth 2001-2003

Preliminary results

- optimized 6 low E models
- additional trigger lowers E threshold
- x60 improvement for 50 soft!

30th International Cosmic Ray Conference Merida, Yucatan, Mexico, July 3rd – 11th 2007

Muon flux limit – Earth 2001-2003

Preliminary results

- optimized 6 low E models
- additional trigger lowers E threshold
- x60 improvement for 50 soft!

Outlook

- optimization for full mass range
- unblinding pending

30th International Cosmic Ray Conference Merida, Yucatan, Mexico, July 3rd – 11th 2007

Muon flux limit – Sun 2001

Current results

- 1st AMANDA result
- competitive with 144 days of livetime
- no string trigger

30th International Cosmic Ray Conference Merida, Yucatan, Mexico, July 3rd – 11th 2007

Muon flux limit – Sun 2001

Current results

- 1st AMANDA result
- competitive with 144 days of livetime
- no string trigger

30th International Cosmic Ray Conference Merida, Yucatan, Mexico, July 3rd – 11th 2007

Muon flux limit – Sun 2001

Current results

- 1st AMANDA result
- competitive with 144 days of livetime
- no string trigger
- Outlook
- inclusion of low E triggers
- more statistics (2001–2003 data)
- improved analysis methods

30th International Cosmic Ray Conference Merida, Yucatan, Mexico, July 3rd – 11th 2007

Conclusion

- No statistically significant excess of neutralino-induced neutrinos from the center of the Earth or the Sun observed
- AMANDA upper limits on the muon flux competitive with other indirect searches
- New trigger improves low E sensitivity by factor >10
- Final 2001–2003 results for Earth and Sun neutralinos follow soon

Backup slides

30th International Cosmic Ray Conference Merida, Yucatan, Mexico, July 3rd – 11th 2007

Daan Hubert for the IceCube Collaboration Vrije Universiteit Brussel, Belgium

Amundsen-Scott South Pole station

30th International Cosmic Ray Conference Merida, Yucatan, Mexico, July 3rd – 11th 2007

South

Pole

AMANDA-II (not to scale)

Vrije Universiteit Brussel, Belgium

IceCube

The IceCube collaboration

University of California, Irvine Clark-Atlanta University University of Delaware / Bartol Research Institute University of Kansas Lawrence Berkeley Natl. Laboratory University of Maryland Pennsylvania State University Southern University and A&M College University of Wisconsin, Madison University of Wisconsin, River Falls

University of Alaska, Anchorage

University of California, Berkeley

RWTH Aachen DESY, Zeuthen Universität Dortmund MPIfK Heidelberg Humboldt Universität, Berlin Universität Mainz BUGH Wuppertal

Stockholms Universitet Uppsala Universitet

Vrije Universiteit Brussel Université Libre de Bruxelles Universiteit Gent Université de Mons-Hainaut

Chiba University

University of Canterbury, Christchurch

Universiteit Utrecht

Oxford University

30th International Cosmic Ray Conference Merida, Yucatan, Mexico, July 3rd – 11th 2007

Daan Hubert for the IceCube Collaboration Vrije Universiteit Brussel, Belgium

Experimental and simulated data

Experiment

- 2001-2003: 5.3x10⁹ events
- 2001 (w/o string): 8.7x10⁸ events

Simulation

neutralino:
 [DARKSUSY]

• atm. μ: [CORSIKA]

• atm. v: [ANIS] $\begin{array}{ll} 50 \ {\rm GeV} < {\rm M}_{\chi} < 5000 \ {\rm GeV} \\ hard \ ({\rm W}^+ {\rm W}^- / \tau^+ \tau^{\circ}) \ {\rm and} \ soft \ (b\overline{b}) \ {\rm ann. \ channel} \\ 90^\circ < \theta_{\nu} < 113^\circ \ ({\rm Sun}) & \theta_{\nu} \sim 180^\circ \ ({\rm Earth}) \\ 600 \ {\rm GeV} < {\rm E}_{\rm p} < 10^{11} \ {\rm GeV} & 0^\circ < \theta_{\rm prim} < 90^\circ \\ 10 \ {\rm GeV} < {\rm E}_{\nu} < 10^8 \ {\rm GeV} & 80^\circ < \theta_{\nu} < 180^\circ \end{array}$

688.0 days eff. livetime

143.7 days eff. livetime

Rejection of atmospheric muons

Earth – sequential 1-dim cuts, optimized with soft criterion

Sun – 1-dim cuts and multi-dim cut, using S/\sqrt{B} criterion

30th International Cosmic Ray Conference Merida, Yucatan, Mexico, July 3rd – 11th 2007

Daan Hubert for the IceCube Collaboration Vrije Universiteit Brussel, Belgium

Optimizing search cone

Final search cone

- Assume isotropic atm. ν background in θ=160°-180°, normalized to total MC expectation in same bin
- Optimize model rejection factor

$$MRF = \frac{\overline{\mu}_{90}(n_b)}{n_s}$$

MRF leads on average to "best upper limit" in N repeated experiments

30th International Cosmic Ray Conference Merida, Yucatan, Mexico, July 3rd – 11th 2007

Efficiency of the AMANDA triggers

Effective volume for solar χ

• At trigger level (LO)

$$V_{eff}^{L0} = \frac{N_{L0}}{N_{gen}} \times V_{gen}$$

- String trigger improves trigger efficiency by factor >10 for E_µ<100GeV
- Still 20-30% gain at higher energies

30th International Cosmic Ray Conference Merida, Yucatan, Mexico, July 3rd – 11th 2007

