Sessions HE 1.6, HE 3.x

Some highlights and thoughts

Ralph Engel (Forschungszentrum Karlsruhe)

Outline

Understanding of cosmic ray interactions (Standard Model physics)

- Reliability of interpretation of air shower data
- Cross section measurements
- Simulation tools and related questions
- Accelerator data

Searching for phenomena beyond the Standard Model

- Dark matter and anti-matter
- Monopoles, exotic particles
- Gravitational waves

Reliability of the interpretation of air shower data

Longitudinal shower profile

Shower maximum: current situation

Elongation rate theorem

$$D_e^{\text{had}} = X_0(1 - B_n - B_\lambda)$$

(Linsley, Watson PRL46, 1981)

$$B_n = \frac{d\ln n_{\rm tot}}{d\ln E}$$

Large if multiplicity of high energy particles rises very fast, **zero in case of scaling**

$$B_{\lambda} = -\frac{1}{X_0} \frac{d\lambda_{\text{int}}}{d\ln E}$$

Large if cross section rises rapidly with energy

Note: $D_{10} = \log(10)D_e$

Electron-muon number correlation

7

Models differ in their predictions

Example: QGSJET 01 SIBYLL 2.1

Muons: current situation (very high energy)

Auger: test of interaction models

Different methods:

- constant intensity cut (independent of energy scale of experiment)
- golden hybrid events
- inclined shower (almost only muons)

(F. Schmidt et al.)

Auger: test of interaction models

HiRes-MIA hybrid measurement

Analysis with QGSJET98 (very similar to QGSJET01)

HiRes Fly's Eye and MIA Collabs., Phys. Rev. Lett. 84 (2000) 4276 13

Sensitivity to physics of first interaction

Muon production:

$$N_{\mu} = \left(\frac{E_0}{E_{\text{dec}}}\right)^{\alpha} \qquad \alpha = \frac{\ln(n_{\text{ch}})}{\ln(n_{\text{tot}})} \approx 0.9$$

Muon number insensitive to changes of high-energy interactions

Possible fix for better inclusive flux predictions

Comparison with Accelerator experiment

16

Was the overall agreement just a coincidence?

EPOS: a new multi-purpose interaction model

Elongation Rate

ICRC'07 – Merida – July 5th 2007

T. Pierog, FZK, IK, page <u>19</u>4

Results for EAS : N

EPOS has a different slope for N_µ (~0.935, SIBYLL ~0.9) AND a different scale : QGSJET01 +25 % or SIBYLL +50% at 10^{19} eV

Model comparison (EPOS, QGSJET, SIBYLL)

Energy correction for fluorescence detectors

Increased muon production directly linked to missing energy correction

Overall model dependence small

Does the composition change (10¹⁷ - 10^{18.5} eV)?

J. Alvarez-Muñiz et al. ICRC 2007, Mérida (México)

Black disk scenario of high energy scattering

850

Black Disk Model

- large number of minijets
- high perturbative saturation scale
- disintegration of leading particle

Depth of shower maximum very sensitive to high energy interaction characteristics

Fluctuations of X_{max} to discriminate?

Only very restrictive if composition is very heavy

The knee energy range as model challenge

KASCADE: sensitivity to hadronic interaction models

KASCADE result: EPOS in detail

GRAPES-3

GRAPES-3: element fluxes

Cross section measurements

Model dependence of shower fluctuations

Different definitions of XI:

Ulrich et al.: theoretical value HiRes (Belov et al.): effective starting point of shower

Heavier and lighter component influence.

EAS-TOP and ARGO-YBJ measurements

Frequency Attenuation: Constant $N_e - N_{\mu}$ cuts

$$\Phi(\theta) = \Phi_0 \exp[-(x_0 \sec \theta - d)/\lambda_{obs}]$$

$$\Phi(\theta) / \Phi(0) = \exp[-(x_0 \sec \theta - 1)/\lambda_{obs}]$$

Primary Energy E_0 selected using muon number $E_1 < E_0 < E_2 \longrightarrow N_{\mu,1} < N_{\mu} < N_{\mu,2}$

Shower development stage selected using shower size $N_{e,1} \le N_e \le N_{e,2}$

$$\lambda_{p-\text{air}}^{\text{exp}} = \lambda_{\text{obs}}^{\text{exp}} / k$$

Phys. Rev. Lett. 70, 525, (1993)

Correction for fluctuations and invisible cross section part

(G. Trinchero et al. I. De Mirti et al.)

Summary of new cross section data

Simulation tools and related questions

Giant air shower simulation

- thin sampling (Rubtsov et al.)
- fully simulated showers (Rubtsov et al.) (1 yr CPU for 10^{18.5} eV)
- parallel computing (Kasahara et al.)

Hybrid programs are mature and checked against CORSIKA

Example: SENECA-CORSIKA comparison

Calculation of radio emission in dense media

J. Alvarez-Muñiz et al. ICRC 2007, Mérida (México)

Calculation of radio emission from air showers

Accelerator data

14,000 GeV (cms)

HARP: $p+C \rightarrow \pi^{\pm} + X$, $p_{\text{lab}} = 12 \text{GeV/c}$

HARP: comparison with models

Al 12 GeV/c : a first (raw) comparison with some geant4 hadronic generators:

black points are HARP data

(Catanesi et al., NOW 2006)

Searches for physics beyond the Standard Model

Monopoles, exotic particles Dark Matter Gravitational waves

Search for Light Magnetic Monopoles

beta > 0.01

Exposure of 4 years

(S. Checchini et al.)

Dark Matter

Principle of indirect constraints on DM

B.r.'s depend on the model (typical bounds are model-dependent)

Occam's razor requires only SM particles in the final state

Since neutrinos represent the most elusive channel, v-based bounds are the most conservative (general) ones

(P. Serpico)

J. Beacom, N. Bell, G. Mack, astro-ph/0608090

The Galactic halo DM flux

234 million particles http://www.ucolick.org/~diemand/vl

$$\rho_{NFW}(r) = \frac{A}{r(r+r_s)^2}$$
$$\rho_{core}(r) = \frac{v_a^2}{4\pi G} \frac{3r_c^2 + r^2}{(r_c^2 + r^2)^2}$$

$$\frac{\mathrm{d}\Phi_{\mathrm{sh}}}{\mathrm{d}E} = \frac{1}{4\pi} \frac{\mathrm{d}N_{\gamma}(E)}{\mathrm{d}E} \frac{\langle \sigma_{\mathrm{ann}}v\rangle}{2\,m_{\chi}^2} \int_{\mathrm{l.o.s.}} \mathrm{d}s\,\rho_{\mathrm{sh}}^2[r(s,\psi)]$$

80 kpc

z=0.0

Ex: isotropic propagation model with DMA

Ex: DMA in model with inhomogeneous medium

Decouples locally observed CR from gamma rays

GALPROP numerical code modified with : including DMA in charged components and gamma rays adjustable grid up to pc scales

anisotropic nonuniform propagation (AD+DMA) dD/dx, dVc/dx

for.ex:

can build a consistent model with DMA for the EGRET excess.

Zd=200 pc $D_d = 10^{30} \text{ cm}^2 \text{ s}$ n(r,z), snr(r,z) (Lorimer et al) Zh=4 kpc $D_h = 10^{28} \text{ cm}^2 \text{ s}$, Vc=z*dV/dz=20 km/s/kpcnH2 scaling~40, $Dc \sim 10^{-2} Dd$

AMS-01: positron identification

Phys. Lett. B646 (2007), 145-154

(S. Schael et al.)

PRIMARY & SECONDARY ANTIDEUTERONS in a 2-zones diffusion model

Results for the BEST FIT (with convection & reaccelaration)

...with neutrinos

Sun

Neutralino signal

- rate depends on SUSY parameters
- 50 GeV < M_{χ} < 5000 GeV hard (W+W-) & soft (bb) annihilations
- vertically upward (Earth) ~horizontal (Sun)

Atmospheric background

• muons

~O(10⁹) events/year downward going

• neutrinos

downward going ~O(10³) events/year all directions

30th International Cosmic Ray Conference Merida, Yucatan, Mexico, July 3rd – 11th 2007

Daan Hubert for the IceCube Collaboration Vrije Universiteit Brussel, Belgium

4

Muon flux limit – Sun 2001

Current results

- 1st AMANDA result
- competitive with 144 days of livetime
- no string trigger
- Outlook
- inclusion of low E triggers
- more statistics (2001–2003 data)
- improved analysis methods

30th International Cosmic Ray Conference Merida, Yucatan, Mexico, July 3rd – 11th 2007

15

THE DRACO DWARF GALAXY

ICRC 2007, Merida, Mexico

Draco:

Dwarf spheroidal galaxy, accompanying the Milky Way at a galactocentric Distance of 82 kpc, (distance to earth: 86 kpc)

```
M/L > 200
```

After L. Mayer et al. (Nature, 445, 738, 2007): Highly DM dominated

The DM halo is modeled by a power law with an exponential cut off: $\rho_{\rm DM} = Cr^{-\alpha} \exp\left(-\frac{r}{r}\right)$

With the following values for *C*, α and r_b (Sanchez-Conde et al, 2007):

 $F(E > E_0) = \frac{N_{\gamma} < \sigma v > 1}{8\pi m_{\gamma}^2} \int_{\Delta\Omega} \int_{\Delta\Omega} B(\Omega) d\Omega \times \int_{los} \rho^2(\Omega, \Psi, s) ds$

The factor $J(\Psi)$ for the cusp and core profile

FLUX FROM NEUTRALINO ANNIHILATION

ICRC 2007, Merida, Mexico

$F(E > E_0) = \frac{N_{\gamma} < \sigma v > 1}{8\pi m_{\chi}^2} \frac{1}{\Delta \Omega} \int_{\Delta \Omega} B(\Omega) d\Omega \times \int_{los} \rho^2(\Omega, \Psi, s) ds$

predicted cross-section for parameters within the mSUGRA-framework

line: 5σ sensitivity curve for 50h of observation by MAGIC. (Tasitsiomi, 2002)

Scalar mass $m_0 < 6$ TeV Gaugino mass $m_{\frac{1}{2}} < 4$ TeV Trilinear coupling -4 TeV $< A_0 < 4$ TeV tan $\beta < 50$

Gravitational waves

 LIGO observatory contains 2 (H2) km and 4 km (H1) interferometers at Hanford, WA and a 4 km interferometer at Livingston, LA (L1). They are designed to detect gravitational waves from astrophysical sources.

Livingston

Inside the LIGO control room

LIGO-G070415-00-Z

Efficiency Estimate :

E_{aw} @153 Hz with 50% detection probability:

 $\sim 2 \times 10^{-8} M_{\odot} c^2$ at 10 kpc

 $\sim 0.05 M_{\odot} c^2$ at 16 Mpc

2

Science run 5 since Nov 2005 (End fall 2007)

Core-collapse Supernovae : Ott et al , PRL 96, 201102 (2006)

11 M_{\odot} progenitor \Rightarrow reach \approx 0.4 kpc 25 M_{\odot} progenitor \Rightarrow reach \approx 16 kpc Binary Black Hole mergers : Baker et al PRD 73, 104002 (2006) 10+10 M_{\odot} binary \Rightarrow reach \approx 3 Mpc 50+50 M_{\odot} binary \Rightarrow reach \approx 100 Mpc

8

Outlook

A Prototype Flight will Provide a Crucial Science & Engineering Demonstration

Balloon Prototype Goals:

- Demonstrate stable, low noise operation of the Si(Li) with its polymer coating at float altitude & ambient pressure.
- Demonstrate the Si(Li) cooling approach & deployable sun shades. Verify thermal model.
- Measure incoherent background level in a flightlike configuration.

2009 Flight planned from Japan with ISIS/JAXA participation

8

Neutrino telescopesGamma-ray telescopes

• PAMELA, 2006

GLAST, 2007

AMS02, 2009

Time of Flight Antimatter TRD Matter v, Z TO COLORADO Magnet Silicon Tracker Z. P Vacuun Case TOF RICH Calorimeter e, γ Size: 3m x 3m x 3m Geometrical acceptance : 0.5 m².sr

Construction of the detectors is complete