RAPPORTEUR PAPER

Sun and Corona

+ *Transient Phenomena in the Heliosphere*

Berndt Klecker

Max-Planck-Institut für extraterrestrische Physik, Garching, Germany

30th ICRC

July 3 - 11, 2007, Merida, Mexico

Sessions SH 1.2 - SH 1.7 + SH 2.1 - 2.4

SESSION SUMMARY

Session	Topics	Oral	Poster	Total			
Sun and Corona							
SH 1.2	Energetic photons and electrons	4	2	6			
SH 1.3	Solar neutrons	3	6	9			
SH 1.4	Energetic charged particle spectra, composition and charge states	10	3	13			
SH 1.5	Particle acceleration on / near the Sun	3	1	4			
SH 1.6	Interplanetray Transport of SEPs	8	9	17			
SH 1.7	Coronal Mass Ejections	2	6	8			
Total		30	27	57			
Transient Phenomena in the Heliosphere							
SH 2.1	Forbush decreases/Effects of coronal mass ejections	13	10	23			
SH 2.2	Corotating regions/shocks	1	3	4			
SH 2.3	Propagating interaction regions/shocks	2	5	7			
SH 2.4	Merged interaction regions	0	1	1			
Total		16	19	35			
				2			

INTRODUCTION

SUN AND CORONA + TRANSIENT EFFECTS IN THE HELIOSPHERE

ENERGETIC PHOTONS AND ELECTRONS

ACS / SPI / Integral Hard X-rays

Struminski & Zimovets, SH 1.2 - 188

SH 1.2

Hard x-ray (> 150 keV) from ACS/SPI

Integral

• Coronas-F: γ-rays (0.1-20 MeV)

Study of several large flares

- Zero Time 8.8 GHz Radio Emission
- Hard X-ray emission in Phase B and C
- 245 MHz shows peak in Phase A
- Effective p acceleration in Phase C

(similar in other events, e.g. Sept 7, 2005)

ENERGETIC PHOTONS AND ELECTRONS

Modelling time profiles of 2.223 MeV γ-emission Variables: Density profile in photosphere αT (Stochastic acceleration) Best Fit: Model 5, i. e. enhanced density

SH 1.2 - 951 (Trottskaja & Miroshnichenko)

PHOTONS FROM INVERSE COMPTON EMISSION AT THE SUN

Modelling IC Flux with modulated GCR spectrum and the photon field of the Sun

SH 1.2 - 600 (Orlando et al.)

With high sensitivity GLAST Measurements: Infer electron spectrum in the inner heliosphere

80-07

10-06

60-07

(LogL/LogL(0, I))

IC Flux from EGRET

SOLAR NEUTRONS -1

• High Energy Solar Neutrons provide information on the acceleration process at the Sun

• Time and duration of n production is directly related to the acceleration time of ions

• Energy of n is related to acceleration process

• Observation with NM, SNT and instruments on S/C

• SNTs provide energy and directional information

•Neutron propagation is not influenced by the magnetic field

SH 1.2 - 191 (Matsubara et al)

SOLR NEUTRON TELESCOPE STATIONS (SNT)

SOLAR NEUTRONS - 2

Neutron observations with NM and SNT and S/C observations:

• Systematic search for solar neutrons in X-class flares

during 2005 - 2006SH 1.3-191; Matsubara et al.,Result: Only September 7, 2005 event showed neutron signalSeptember 7, 2005 event investigated by several authors:Neutron Time Profile and Spectra, September 7, 2005SH 1.3-0374; Watanabe et al.Neutron Spectrum derived from SNT(using SNT E-ch)SH 1.3-0912; Sako et al.,Neutron spectrum from SNT (using timing+response)SH 1.3-1225; Gonzalez et alOctober 28, 2003: Neutron Time ProfileSH 1.3-0371; Watanabe et al.April 15, 2001: Neutrons and Protons in the eventSH 1.3-099; Muraki et al.

SH 1.3-374 (Watanabe et al.)

Fit of long lasting time profile using Hua's Loop Model, assuming injection time profile from 4.4 MeV γ-line

- $\lambda = 5000 \qquad (scattering parameter) \\ \delta = 0.20 \qquad (convergence parameter)$
- s = -3.6 (p spectral index)
- L = 38,600 km (from RHESSI and GOES/SXI)

SOLAR NEUTRONS - 4

NEUTRON ENERGY SPECTRA

Independent approach to infer Energy Spectrum of Neutrons:

Monte Carlo Simulation, using:

- Decay during propagation to Earth
- Attenuation in atmosphere
- Energy response of several channels of the SNT

```
Neutron Injection Spectrum ~E<sup>-3.0</sup>
```

SH 1.3 - 912 (Sako et al.)

September 7, 2005 Event (Mexico SNT)

ENERGETIC CHARGED PARTICLES

Spectra, Composition, and Charge States

IMPULSIVE EVENTS

Acceleration related to Flare Process *"Flare Particles"*

GRADUAL EVENTS

Acceleration related to Coronal / Interplanetary Shock

"Shock accelerated Particles"

	³ He-rich	gradual
particles	electron rich	proton rich
³ He/ ⁴ He	~1	~ 0.0005 (Solar Wind)
[Fe/O]/[Fe/O] _{cor}	~ 10	~ 1
H/He	~ 10	~ 100
QFe	~ 20	~ 14
Duration	hours	Days
Long. Distrib	< 30°	~ 180°
Metric Radio	III, V	II,III,IV,V
Solar Wind		lpl. shock
Event Rate	~ 1000/a	~ 10/a

Lin, 1970; Pallavicini et al., 1977, Reames 1999

ENERGETIC CHARGED PARTICLES

Spectra, Composition, and Charge States

IMPULSIVE EVENTS

Acceleration related to Flare Process *"Flare Particles"*

GRADUAL EVENTS

Acceleration related to Coronal / Interplanetary Shock

"Shock accelerated Particles"

	³ He-rich	gradual
particles	electron rich	proton rich
³ He/ ⁴ He	~ 1	~ 0.001 – 0.1
[Fe/O]/ [Fe/O] _{cor}	~ 10	~ 1
[Mass 100-200]	> 100	
H/He	~ 10	~ 100
Q _{Fe}	~ 10-20 Q(E)	~ 10 at < 500 keV
		~20 at > 10 MeV/n
Duration	hours	Days
Long. Distrib	< 30°	~ 180°
Metric Radio	III, V	II,III,IV,V
Solar Wind		lpl. shock
CME	Y (narrow)	Y
Event Rate	~ 1000/a	~ 10/a

ENERGETIC CHARGED PARTICLES ³*He-rich, Heavy Ion -rich Events*

Strong energy dependence of $Q_{Fe}(E)$ for ALL ³He-rich, Fe-rich events observed so far. Möbius et al, ICRC 2003; Klecker et al., 2006 Kovaltsov et al., 2000; Kocharov et al., 200x

Result: Acceleration Must be in the low corona Altitude < 0.2 R_S

Numerical Model combining Stochastic Acceleration, Coulomb Loss, Ionization + Recombination with Interplanetary Propagation Kartavykh et al., SH 1.4 - 649 Ionic Charge States: Pérez-Peraza et al., SH 1.43774

Energy Dependent Ionic Charge States

Large Variability of Q (E) for Heavy Ions, in particular for Fe

From SEP Event Averages: At low energies of up to ~ 250 keV/amu: Q_{Fe} ~ 10, similar to Solar Wind

At Interplanetary Shocks:

SH 1.4 - 667 (Klecker et al.)

Q_{Fe}(E) ~ 10.5 independent of energy in the energy range 0.18-0.43 MeV/n

Mazur et al., 1999; Möbius et al., 1999

NEW OBSERVTIONS : LARGE (*GRADUAL*) EVENTS ³He at IP Shocks

Spectra and Composition

Spectra and Composition

Consistent with scenario of acceleration by quasi-parallel shock

SH 1.4 - 1186 (Mewaldt et al.)

Relate Energy of spectral break to scattering mean free path (Cohen et al., 2005)
κ = 1/3 λ v, κ ~ (M/Q)^α(E)^{(α+1)/2}
E₁/E₂ = [(Q/M)₁ / (Q/M)₂]^{2α/(α+1)}, i.e.
α = β / (2-β)
α = 2 + q
q: power law index of wave turbulence

q > - 2 ... 0 additional wave power near shock

Spectra and Composition

SH 1.4 - 1186 (Cohen et al.)

Spectra and Composition

Dec 6, 2006

Type 2 Event: ?

Type 1 Event: consistent with acceleration at quasi-parallel shock

SH 1.4 - 1186 (Cohen et al.)

Correlation of Ionic Charge with Abundances

High Energy

At high energies:

- Q_{Fe}(E) increasing at E > 10 Mev/nuc in many events
- Correlation of high Fe charge with high Fe/O abundance

Type 2 Events

Labrador et al., ICRC 2005

SCENARIO 1 FOR HEAVY ION ENRICHMENT AND HIGH CHARGE STATES AT HIGH ENERGIES

SCENARIO 2 FOR HEAVY ION ENRICHMENT AND HIGH CHARGE STATES AT HIGH ENERGIES

Tylka et al. 2001, 2005; Tylka & Lee, 2006

Further Investigation Needed

STEREO / ACE with 3 measurements separated in longitude may provide the clue

Model: Mixing of 2 Populations 1. Source with 2 components: (1) Coronal Source (2) Flare Source 2. Spectra with Q/M and θ_{BN} dependent roll-over E_0 at high energies: $F_i = C_i E^{-\gamma} \exp(-E/E_{0i})$ $E_{0i} = E_0 (Q_i/A_i) *(\sec(\theta_{BN}))^{\alpha}$ $\alpha = 2/(2\gamma - 1)$ 3. Higher injection threshold for large θ_{BN} (simulated by suppression of

coronal component with increasing θ_{BN}).

4. Averaging spectra over $\theta_{BN,}$ i.e. assuming contributions from parallel and perpendicular shock

MULTI SPACECRAFT OBSERVATIONS

from STEREO / IMPACT Web Page

SH 1.4 - 1150 Cohen et al.SH 1.4 - 1202 Von Rosenvinge et al.SH 1.4 - 1218 Mewaldt et al.

Excellent agreement between instruments on STEREO and near Earth (ACE, SAMPEX, GOES)

Great potential for multi-spacecraft studies from different vantage points:

STEREO - ACE / SOHO

ACCELERATION AND TRANSPORT OF Solar Energetic Particles

Acceleration and Transport of SEPs	
CME propagation + Transport	SH 1.7 - 0232, Kota
Shock Accel. Model (quasi-parallel)	SH 1.5 - 1273, Li, et al.,
Comparison of shock acc, stochastic acc,	SH 1.5 - 352, Perez-Peraza et al.
Acceleration in stochastic electric fields	SH 1.5 - 0140, Zimovets
Acceleration at perpendicular shock + recirculation	SH 2.3 - 1015, Nemeth
Propagation of e, p in impulsive events	SH 1.6 - 653 Dröge et al
Propagation of e in impulsive events	SH 1.6 - 1281 Li et al
SEP Event time scales and solar wind streams	SH 1.6 - 361, Kahler
Travel delays of impulsive SEPs	SH 1.6 - 366 Ragot & Kahler
Particle Propagation in the 3D Heliosphere	SH 1.6 - 455 Malandraki et al.

ACCELERATION AND TRANSPORT OF Solar Energetic Particles

Acceleration at quasi-parallel shock

Fit of Sept 27, 2001 SEP Event

Q/A dependent spectral breaks can be reproduced

Numerical Code for particle acceleration and transport at quasi-parallel shock, including • local injection

- Fermi acceleration at the shock
- self-consistent excitation of waves at the shock
- particle scattering and escape

SH 1.5 - 1273 G. Li, et al

ACCELERATION AND TRANSPORT *Time Delay between Injection at the Sun and 1AU*

Solar release time (t_{SRT}) is often computed from the particle arrival time t_{arr} and assuming propagation along the Parker Spiral field line of length L • Lengthening of field lines due to turbulence

 use measured turbulence to simulate lengthening for various length scales δz

SH 1.6 - 366 (Ragot & Kahler)

$$t_{arr} = t_{SRT} + L / v$$

ACCELERATION AND TRANSPORT

Propagation in Impulsive Events

Solar Particle Propagation Combination of: Azimuthal Transport Close to the Sun (Coronal Diffusion) Transport Parallel To *B* Pitch Angle Scattering, Focusing, Adiabatic Losses Possible Diffusion Across The Average Magnetic Field

Transport using focused diffusion model

$$\frac{\partial f}{\partial t} + \mu v \frac{\partial f}{\partial z} + \frac{1 - \mu^2}{2L} v \frac{\partial f}{\partial \mu} - \frac{\partial}{\partial \mu} \left(D_{\mu\mu}(\mu) \frac{\partial f}{\partial \mu} \right) = q(z, \mu, t)$$

 $\lambda_{\rm II}$ computed with 10-20% slab and 80-90% 2D turbulence, DQLT SH 1.6 - 653 (Dröge et al.)

using Dµµ from DQLT

FD: finite difference solution

MC Simulation

CORONAL MASS EJECTIONS - SH 1.7

CME

ICME

Zurbuchen & Richardson, 2006

SOHO / LASCO

CORONAL MASS EJECTIONS

SEP Acceleration at evolving CMEs with changing shock-geometry; Kota

Relationship of Coronal Mass Ejections and high speed Solar wind

Characteristics of CMEs with respect to their source region during

Streams with Geomagnetic activity Pankaj; Kumar Shrivastava

SH 1.7 232 330 107

- 23rd sunspot cycle; M. Pratap
 Study of Halo, Partial Halo CMEs in association of intense geomagnetic storms. M. Pratap
- 153 Waiting time distribution of emissions in complex Coronal Mass Ejections; Adolfo Mendez Berhondo, et al.
- 796 Variations in cosmic ray intensity and interplanetary parameters on the onset of coronal mass ejection; Kumar, et al.
- 1245 Analytical model for expansion speed for Limb CMEs, Muñoz et al.
- 1309 Magnetic Clouds: The cylindrical elliptic approach; Vandas, et al.

SH 2.1

- 54 Coronal Mass Ejections and Cosmic Ray Long Term Modulation; Lara & Caballero-Lopez
- A Survey of Interplanetary Coronal Mass Ejections During 1996 2007
 Richardson & Cane

INFERRING ICME PROPERTIES

Relating expansion speed to radial speed (SOHO / LASCO C2 + C3), assuming constant opening angle of the CME cone

SH 1.7- 1245 (Muñoz et al)

Radial CME Flux Tube

Elliptical CME Flux Tube

Fit of Magnetic Field Profiles assuming elliptical cross section of flux tube

SH 1.7- 1309 (Vandas et al)

ICME PROPERTIES, 1996-2007

• ICME rate has nearly returned to that during the previous solar minimum;

• ICME rate does not strictly follow the sunspot number;

- Increasing trend in fraction of magnetic clouds?
- Mean ICME speeds are highest during declining phase of this solar cycle.

• ICME rate at Ulysses is comparable to that at Earth (~2/rotation), despite the variations in s/c latitude.

SH 2.1- 0381 (Richardson & Cane)

CMEs AND MODULATION

CMEs per CRT SH 2.1-054 (Lara & Caballero-Lopez)

CMEs AND MODULATION

SH 2.1-054

(Lara & Caballero-Lopez)

FORBUSH DECREASE / EFFECTS OF CMEs *Typical Time Profile of Forbush Decrease*

CME / SOHO May 13, 2005 17:22 M8 Flare 16:57 SH 2.1 - 48 (Jain et al.)

FORBUSH DECREASE / EFFECTS OF CMEs

Muon Hodoscope

- •Three detectors with thresholds of 2.6, 2.7 and 5.6 GeV
- Using 3 detectors and variation of response with zenith angle allows to reconstruct 2 D - dynamics of the Forbush decrease

FORBUSH DECREASE EFFECTS

COROTATING INTERACTION REGIONS - SHOCKS

CIRs observed by STEREO and ACE in early 2007

SH 2.2-924 (Müller-Mellin et al.)

SH 2.2 - 1224 (Leske et al.)

Unsolved Questions, e.g.

Composition (C/O ~1, different from SEP)

Anisotropies

Large perp. Diffusion?

Questions can be tackled with increasing separation of STEREO A and B

THINGS TO HAPPEN BETWEEN NOW AND THE NEXT ICRC ... a Wish List ...

- Looking forward for solar activity to pick up
- Many Flares, CMEs, GLEs ...

• Multispacecraft Measurements with STEREO, ACE, RHESSI, TRACE, ...

• Modelling Effort on Acceleration in Impulsive Events, including charge stripping, 3He and Heavy Ion enrichment, and interplanetary propagation

• Modelling of CME Propagation, and particle acceleration at the evolving parallel and perpendicular Shock ...

SEE YOU AT THE 31th ICRC