

Calibration of the EAS Radio Pulse Height

Andreas Horneffer for the LOPES Collaboration

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Radio Emission from R Air Showers

- Air showers emit short, intense radio pulses
- Radiation due to geomagnetic emission process e.g. geosynchrotron
- Coherent emission at low frequencies
- Measuring the radio emission from air showers could give several benefits:
 - Higher duty cycle than fluorescence telescopes
 - Effective RFI suppression allows measuring in polluted (populated) areas
 - Data integrated over the shower evolution, can be complementary to particle detectors
 - High angular resolution possible

LOPES (LOFAR Prototype Station)

- Set up at the KASCADE-Grande site
- Frequency range of 40 – 80 MHz
- Triggered by large event trigger
- 10 antennas in the first phase,
 30 antennas in second phase
- Goals:
 - Develop techniques to measure the radio emission from air showers
 - Determine the radiation mechanism of air showers
 - Calibrate the radio data with theoretical and experimental values from an existing air shower array

Field Strength Calculation

The field strength is calculated by:

$$\varepsilon = \sqrt{\frac{4\pi \nu \mu_0}{G_{(\theta, \phi, \nu)}c}} \frac{1}{A_{ele(\nu)}R_{ADC}} V_{ADC}$$

(With: ε : field strength, v: observation frequency, G: antenna gain, A_{ele} : amplification (gain) of the electronics, R_{ADC} : ADC impedance, and V_{ADC} : voltage at the ADC.)

- V_{ADC} is the measured value
- A_{ele} and G are calibration values that need to be measured
- All other values are either constants or determined by the experiment

Calibration Measurements

- Antenna gain from simulations
- Electronic Gain from measurements with reference source
 - Also mitigates errors of the antenna simulations

LOPES30 Data

This slide was not in my presentation, but it should have been...

- Used data from November 2005 to September 2006
- used selection for further study:
 - good KASCADE data
 - KASCADE array processor didn't fail
 - distance of the core to the array center < 91m</p>
 - good "age parameter"
 - truncated muon number > 10^{5.2}
 - not during thunderstorm
 - zenith angle < 50°</p>

LOPES30 Pulse Radboud University Height Dependence Nijmegen

WDE

(ICITEV

$$\underbrace{\mathsf{LOPES30: Field Strength}_{\mathsf{Parameterization}} \mathbb{P}_{\mathsf{Nijmegen}}^{\mathsf{Radbould}}}_{\mathsf{Nijmegen}} \underbrace{\mathsf{Field Strength}_{\mathsf{Nijmegen}}}_{\mathsf{Nijmegen}} \underbrace{\mathsf{Field Strength}_{\mathsf{Nijmegen}}}_{\mathsf{Nijmegen}} \\ \varepsilon_{est, N_{\mu}} = (55.5 \pm 5.8) \left[\frac{\mu V}{m M H z} \right] (1 + (0.08 \pm 0.013) - \cos(\alpha)) \\ \times \exp\left(\frac{-R_{SA}}{(145 \pm 31) m} \right) \left(\frac{N_{\mu}}{10^6} \right)^{(0.98 \pm 0.03)} \\ \varepsilon_{est, E_{p}} = (10.9 \pm 1.1) \left[\frac{\mu V}{m M H z} \right] (1 + (0.16 \pm 0.02) - \cos(\alpha)) \cos(\theta) \\ \times \exp\left(\frac{-R_{SA}}{(202 \pm 64) m} \right) \left(\frac{E_{p}}{10^{17} eV} \right)^{(0.94 \pm 0.03)}$$

(ε_{est} : EW-pol field strength per unit bandwidth, α : geomagnetic angle, θ : zenith angle, R_{SA} : mean distance antennas \leftrightarrow shower axis, N_{μ} : truncated muon number, E_{p} : primary particle energy)

Statistical Spread

Summary

- LOPES has demonstrated that radio measurement of air showers is a viable method
- Full end to end calibration of the electronics is the key to good field strength determination
- The radio pulse height can be parameterized as a function of α , θ , R_{SA} , and N_{μ} or E_{p}
- This parameterization can be used to determine the primary particle energy from radio data alone.

L. Bähren

H. Falcke

S. Wijnholds

LOPES Collaboration

A. Horneffer

J Petrovic

ASTRON, Dwingeloo, The Netherlands Department of Astrophysics, Nijmegen H. Butcher The Netherlands S. Buitink G.W. Kant J. Kuijpers S. Lafebre A. Nigl W. van Capellen K. Singh

Universität Wuppertal, Germany

J. Auffenberg R. Glasstetter

G. de Bruyn C.M. de Vos

Y. Koopman H.J. Pepping

G. Schoonderbeek

K.H. Kampert J. Rauthenberg

Universität Siegen, Germany

M. Brüggemann	P. Buchholz
C. Grupen	Y. Kolotaev
S. Over	W. Walkowiak
D. Zimmermann	

Max-Planck-Institut für Radioastronomie, Bonn, Germany

P.L. Biermann

J.A. Zensus

Istituto di Fisica dello Spazio

Interplanetario, Torino, Italy C. Morello P.L. Ghia

G.C. Trinchero

Soltan Institute for Nuclear Studies, Lodz, Poland P. Luczak A. Risse J. Zabierowski

Dipartimento di Fisica Generale dell'Universita, Torino, Italy M. Bertaina A. Chiavassa F. di Pierro G. Navarra

neering

National Institute of Ph	nysics and Nuclear Engi
Bucharest,Romania	
A. Bercuci	I.M. Brancus
B. Mitrica	M. Petcu
A. Saftiou	O. Sima
G. Toma	

Institut für Kernphysik,

<u>Forschungsz</u>	entrum Karls	ruhe, Germany
W.D. Apel		A.F. Badea
K. Bekk		J. Blümer
H. Bozdog		F. Cossavella
K. Daumiller	P. Doll	
R. Engel		A. Hakenjos
A. Haungs		D. Heck
T. Huege		P.G. Isar
H.J. Mathes	H.J. Mayer	
C. Meurer		J. Milke
S. Nehls		R. Obenland
J. Oehlschläg	jer	S. Ostapchenko
T. Pierog		S. Plewnia
H. Rebel		M. Roth
H. Schieler	H. Ulrich	
J. van Buren	A. Weindl	
J. Wochele		

Institut für Prozessd	atenver-
arbeitung und Elektr	onik, FZK, Germany
T. Asch	H. Gemmeke
O. Krömer	

Institut für Experimentelle Kernphysik Universität Karlsruhe, Germany E. Bettini M. Deutsch A. Hakenjos J.R. Hörandel M. Stümpert

LOFAR

- Digital radio interferometer for the frequency range of 10 - 270 MHz
- Array of 77+ stations of 96 simple antennas
- Fully digital: received waves are digitized and sent to a central computer cluster
 - Digital radio interference suppression
 - Ability to store the complete radio data for a short amount of time
 - This allows to form beams after a transient event has been detected, combining the advantages of low gain and high gain antennas
- LOFAR will be a good tool to measure the radio emission from air showers

