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Abstract: Interpretation of EAS measurements strongly depends on detailed air shower simulations.
The uncertainty in the prediction of shower observables for different primary particles and energies is
currently dominated by differences between hadronic interaction models. The new modelsQGSJETII-3
andEPOS1.6, which reproduce all major results of existing accelerator data (including detailed data of
RHIC experiments forEPOS), have been implemented in the air shower simulation programsCORSIKA
andCONEX. We show predictions of these new models and compare them with those from older models
such asQGSJET01 orSIBYLL . Results for important air shower observables are discussed in detail.

Introduction

The experimental method of studying ultra-high
energy cosmic rays is an indirect one. Typically,
one investigates various characteristics of exten-
sive air showers (EAS), a huge nuclear-electro-
magnetic cascade induced by a primary particle in
the atmosphere, and uses the obtained information
to infer the properties of the original particle, its
energy, type, direction etc. Hence, the reliability
of ultra-high energy cosmic ray analyses depends
on the use of proper theoretical and phenomeno-
logical descriptions of the cascade processes.

The most natural way to predict atmospheric parti-
cle cascading in detail seems to be a direct Monte
Carlo (MC) simulation of EAS development, like
it is done, for example, in theCORSIKA program
[1]. As a very large computation time is required
at high energy, an alternative procedure was devel-
oped to describe EAS development numerically,
based on the solution of the corresponding cas-
cade equations. Combining this with an explicit
MC simulation of the most energetic part of an air
shower allows us to obtain accurate results both for
average EAS characteristics and for their fluctua-
tions inCONEX program [2].

After briefly describing recent changes introduced
in CORSIKA and CONEX, we will present the lat-

est results for important air shower observables ob-
tained with these models.

Improvements of CORSIKA and
CONEX

Last yearQGSJETII-3 [3] and this yearEPOS1.6
[4] have been introduced in bothCORSIKA and
CONEX as new hadronic interaction models. These
models have quite different philosophies. The first
one is dedicated to cosmic ray physics and based
on the re-summation of enhanced pomeron graphs
to all orders [5]. The latter one is designed for high
energy physics and partially relies on a more phe-
nomenological approach, aiming at a nearly per-
fect description of accelerator data, in particular
new RHIC measurements. Some results are pre-
sented in the following (see also [6]).

Concerning the particle tracking algorithms, the
most important improvement in the last release of
CORSIKA (6.611) is the possibility to combine the
SLANT/UPWARD/CURVED options [7] in order to
simulate air showers with any kind of zenith an-
gle, including upward going showers (from0◦ to
180◦). The calculation of slant depth distances has
been improved using the work of [8] as also em-
ployed inCONEX. In Fig. 1 the mean longitudinal
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Figure 1: Mean longitudinal energy deposit profile
in GeV g−1 cm2 as a function of the slant depth in
g cm−2 for proton induced89◦ inclined showers
at1014 eV simulated withCORSIKA (red dots) and
CONEX (green line) usingQGSJET01.

energy deposit profile is shown as a function of the
slant depth for proton induced showers of89◦ at
1014 eV, simulated withCORSIKA andCONEX us-
ing QGSJET01 [9]. Even for this extreme zenith
angle, very good agreement between the two pro-
grams is found.

Furthermore, in order to improve muon propaga-
tion, the Sternheimer density correction of the ion-
ization energy loss has been extended to apply also
to muons in bothCORSIKA andCONEX, based on
work by Kokoulin & Bogdanov [10]. The effect of
the density correction can be seen in Fig. 2.

A major technical improvement was achieved
in CORSIKA by replacing the old version
manager CMZ by the combination ofAUTO-
CONF/AUTOMAKE tools for the installation and
selection of options inCORSIKA. Compilation
has not to be done by the user anymore, rather
Makefiles are generated byAUTOMAKE . Options
are selected by a shell script usingAUTOCONF

and standard C preprocessor commands in the
CORSIKA source code.

Finally, the interfaces toFLUKA 2006.3 [11] and
HERWIG 6.51 [12] have been updated.
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Figure 2: Muon energy loss inGeV g−1 cm2 as
function of total muon energy in GeV forCORSIKA

versions 6.200 (dashed) and 6.611 (full).
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Figure 3: Mean lateral distribution function of
Cherenkov density for1019 eV vertical pro-
ton induced showers and different high-energy
hadronic interaction models,EPOS 1.6 (full),
QGSJET01 (dashed-dotted),QGSJETII-3 (dashed)
andSIBYLL 2.1 (dotted).
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Latest results

In the following air shower simulation results us-
ing EPOS 1.6 andQGSJETII-3 are presented and
compared to former results usingQGSJET01 [9] or
SIBYLL 2.1 [13, 14].

In Fig. 3, CORSIKA-based estimates for the lateral
distribution of the Cherenkov signal in Auger tanks
[15] are shown. The tank signal has been simu-
lated in a simplified way as only the relative differ-
ences between the model results are of importance
here. Due to a much larger muon number at ground
in EPOS[6, 16], the density at 1 km shows an ex-
cess of about 30 to 40% compared toQGSJETII-
3 while the latter is well in betweenQGSJET01
and SIBYLL . Such an excess is of crucial impor-
tance for the reconstruction of the primary energy
and composition with the Auger surface detector
alone [17]. Compared to other models, usingEPOS

would decrease the energy reconstructed from lat-
eral densities and could lead to a lighter primary
cosmic ray composition.

The higher muon number fromEPOSis mainly due
to a larger baryon-antibaryon pair production rate
in the individual hadronic interactions in showers.
By predicting more baryons, more energy is kept
in the hadronic shower component even at low en-
ergy. As a consequence, the calorimetric energy
as measured by fluorescence light detectors is re-
duced since more energy is transferred to neutrinos
and muons. In Fig. 4 the conversion factor from
the visible calorimetric energy to the real energy is
plotted as a function of the primary energy of the
showers.QGSJETII-3 gives results very similar to
SIBYLL . As expected,EPOSshows a conversion
factor which is up to 3.5% higher than other mod-
els at low energy.

As shown in Fig. 5, the mean depth of shower max-
imum, Xmax, for proton and iron induced showers
simulated withCONEX is nevertheless not very dif-
ferent forEPOS. Up to 1019 eV, all models agree
within 20g cm−2. EPOS proton induced showers
show a slightly higher elongation rate in that range
while QGSJETII-3 has a slightly lower one. Above
this energy, bothQGSJET01 andQGSJETII-3 elon-
gation rates decrease due to the very large multi-
plicity of these models at ultra-high energy. Below
1018 eV, an analysis ofXmax data would lead to a
composition of primary cosmic rays that is heav-
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Figure 4: Mean factor for the conversion of ob-
served (calorimetric) energy to total energy for iron
(dotted) or proton (dashed) induced showers. The
conversion factor is shown forQGSJET II-3 (cir-
cles), SIBYLL 2.1 (squares) andEPOS1.6 (trian-
gles). The mean conversion factor (full line) is
calculated by averaging all proton and iron predic-
tions.

ier usingQGSJETII-3 compared toEPOS. Above
1018 eV the situation is reversed.

Conclusions

New versions ofCORSIKA andCONEX have been
released recently with two new hadronic interac-
tion models. The models differ in several impor-
tant aspects in the approach of reproducing data.
In QGSJET II-3, high parton density effects are
treated by re-summing enhanced pomeron graphs
to all orders, but energy conservation at ampli-
tude level is not implemented. On the other hand,
in EPOS, energy conservation at amplitude level
is fully implemented, but high-density effects are
treated by a phenomenological parametrization.
EPOS is particularly well-tuned to describe avail-
able accelerator data including heavy ion collisions
measured at RHIC. The differences of the model
predictions are large: At high energy, proton in-
duced air showers simulated withEPOShave even
more muons at ground than iron induced showers
simulated withQGSJETII-3. Comparison to cos-
mic ray data, for example, from the KASCADE
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Figure 5: Mean Xmax for proton and iron induced showers as a function of the primary energy. Predictions
of different high-energy hadronic interaction models,QGSJET01 (dashed-dotted),QGSJETII-3 (dashed),
SIBYLL 2.1 (dotted) andEPOS 1.6 (full), are compared to data. Refs. to the data can be found in [18]

detector, are now needed to support or disfavour
theEPOSpredictions [19].
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