Applying Extensive Air Shower Universality to Ground Detector Data

Fabian Schmidt
Dep. of Astronomy & Astrophysics and Kavli Institute for Cosmological Physics
The University of Chicago

with Maximo Ave, Lorenzo Cazon, Aaron Chou

30th ICRC, Merida, Mexico
Session HE 1.6, July 5th, 2007
Outline

- EAS universality at large core distances
- Ground signal parametrization based on universality
- Determining number of muons and model-independent energy scale
- Conclusion
Energy calibration of ground arrays

Standard procedure so far:

- determine $S(r_{\text{opt}})$ from detector signals
 - r_{opt} depends on experiment (detector spacing)
- calibrate $S(r_{\text{opt}})$ – E relation with simulations
- large systematic uncertainties in E calibration
 - due to unknown hadronic interaction physics

Can we circumvent these unknowns?
Idea of EAS Universality

- UHECR air shower: $\sim 10^{10}$ particles
- Details of hadronic interactions quickly washed out for EM particles ($e^+/e^-/\gamma$)
- Particle flux at ground only function of:
 - energy E
 - zenith angle θ
 - distance to ground DG of shower maximum
Universality of EM component

- Evolution of signals from EM particles in water Cherenkov tank – proton / iron at 10^{19} eV

- At 1000m from shower core
- ```Flat tank''` approximation
 -> no θ-dependence
- Not including muon decay products
- CORSIKA simulations with QGSJetII / Fluka
Universality of EM component

- ~12% difference b/w p/Fe - universality violation
- independent of shower evolution

Signals for different primaries/models relative to proton-QGSJetII
Universality of μ component?

- Again water Cherenkov signals at 1000m
- Strong primary/model dependence

![Graph showing s_{μ} vs. DG with different markers for proton and iron from QGSJetII and Sibyll models.](image)
Universality of μ component

- Primary/model dependence in signal normalization, *not* evolution!

μ signals relative to proton QGSJetII
Signal parametrization

- Based on universality:
 - S_{EM} known (*given DG*)
 - S_{μ} evolution known
 - μ signal normalization N_{μ} unknown
 - \rightarrow to be determined from data
 - DG given by mean depth of showers $<X_{\text{max}}>$

\[
S(E, \theta, DG) = S_{EM}(E, \theta, DG) + N_{\mu} \cdot S_{\mu,\text{ref}}(\theta, DG)
\]

Reference: proton-QGSJetII at 10^{19} eV
Determining N_μ from data

- Use isotropy of cosmic ray flux

constant intensity method:

$N_{\text{events}} (>E)$ is equal in equal exposure bins in θ

- Showers at different zenith angles probe different DG -> discern S_{EM} from S_μ
Constant intensity method

- $N_\mu = 0.5$: too small ...

Energy fixed at 10^{19} eV

Signal at 1000m vs sec θ

$N_{\text{events}} (> S)$ in equal exposure bins $(\sin^2 \theta)$
Constant intensity method

- $N_\mu = 2.0$: too large ...

Energy fixed at 10^{19} eV

Signal at 1000m vs sec θ

$N_{\text{events}} (> S)$ in equal exposure bins (sin$^2 \theta$)
Constant intensity method

- \(N_{\mu} = 1.0: \) right ...

Energy fixed at \(10^{19} \text{ eV} \)

![Graph](image)

- Signal at 1000m vs sec \(\theta \)
- \(N_{\text{events}} (> S) \) in equal exposure bins (\(\sin^2 \theta \))
N_μ and the ground detector energy scale

- N_μ determined from data yields

 model- and primary-independent ground detector energy scale:

 \[
 \text{Ground signal } (E, \theta) = S_{EM}(E, \theta) + N_{\mu,\text{exp}}(E) \cdot S_{\mu,\text{ref}}(\theta)
 \]

- based on universality
 - systematic error in N_μ around 0.1 due to universality violation and uncertainty on $<X_{\text{max}}>$
 - statistical error for Auger-like data set ~ 0.1
Validation with hybrid events

- Combination of **fluorescence tel.** and **ground array**: independent event-by-event energy and \(X_{\text{max}} \)
- Directly measure \(S_{\mu} \) (relying on known \(S_{\text{EM}} \)):
 \[
 S_{\mu,i} = S_i - S_{\text{EM}}(E_i, \theta_i, X_{\text{max},i})
 \]
- probe muon signal evolution \(S_{\mu} \) (DG)
- measure \(N_{\mu} \) at different \(\theta \):
 - consistency check of universality
- **Caveat**: have to rely on fluorescence energy scale
Conclusions

- EM signal and muon signal evolution universal
- Muon normalization can be inferred from data
- Method yields model- and primary-independent energy scale for ground detectors
- Measured N_μ places constraints on hadronic interaction models
- New model EPOS under investigation
- Application to Auger data presented by R. Engel, #605