Applying Extensive Air Shower Universality to Ground Detector Data

Fabian Schmidt

Dep. of Astronomy & Astrophysics and Kavli Institute for Cosmological Physics The University of Chicago

with Maximo Ave, Lorenzo Cazon, Aaron Chou

Kavli Institute for Cosmological Physics at the UNIVERSITY OF CHICAGO

30th ICRC, Merida, Mexico Session HE 1.6, July 5th, 2007

Outline

- EAS universality at large core distances
- Ground signal parametrization based on universality
- Determining number of muons and modelindependent energy scale
- Conclusion

Energy calibration of ground arrays

Standard procedure so far:

- determine S(r_{opt}) from detector signals
 - r_{opt} depends on experiment (detector spacing)
- calibrate S(r_{opt}) E relation with simulations
- large systematic uncertainties in E calibration
 - due to unknown hadronic interaction physics

Can we circumvent these unknowns ?

Idea of EAS Universality

- UHECR air shower: ~10¹⁰ particles
- Details of hadronic interactions quickly washed out for EM particles (e⁺/e⁻/γ)
- Particle flux at ground only function of:
 - energy E
 - zenith angle θ

- distance to ground **DG** of shower maximum

30th ICRC - Fabian Schmidt

Universality of EM component

 Evolution of signals from EM particles in water Cherenkov tank – proton / iron at 10¹⁹ eV

- At 1000m from shower core
- `Flat tank" approximation
 -> no θ-dependence
- Not including muon decay products
- CORSIKA simulations with QGSJetII / Fluka

30th ICRC - Fabian Schmidt

Universality of EM component

- ~12% difference b/w p/Fe universality violation
- independent of shower evolution

Signals for different primaries/models relative to proton-QGSJetII

Universality of μ component ?

- Again water Cherenkov signals at 1000m
- Strong primary/model dependence

proton / iron QGSJetll / Sibyll

Universality of μ component

 Primary/model dependence in signal normalization, not evolution !

μ signals relative to proton QGSJetII

Signal parametrization

Based on universality:

- S_{EM} known *(given DG)*
- S_{μ} evolution known
- μ signal normalization N unknown

-> to be determined from data

– DG given by mean depth of showers <X _____>

$$\mathbf{S(E, \theta, DG) = S_{EM}(E, \theta, DG) + N_{\mu} \cdot S_{\mu, ref}(\theta, DG)}$$

Reference: proton-QGSJetII at 10¹⁹ eV

30th ICRC - Fabian Schmidt

Determining N_{μ} from data

Use isotropy of cosmic ray flux

constant intensity method:

 $N_{events}(>E)$ is equal in equal exposure bins in θ

 Showers at different zenith angles probe different DG -> discern S_{EM} from S_μ

Constant intensity method

Energy fixed at 10¹⁹ eV

Constant intensity method

Energy fixed at 10¹⁹ eV

Constant intensity method

• $N_{\mu} = 1.0$: right ...

Energy fixed at 10¹⁹ eV

N_{μ} and the ground detector energy scale

N_μ determined from data yields
 model- and primary-independent ground detector energy scale:

Ground signal (E, θ) = S_{EM}(E, θ) + N_{µ,exp}(E) S_{µ,ref}(θ)

- based on universality

 systematic error in N_µ around 0.1 due to
 universality violation and uncertainty on <X_{max}>
 - statistical error for Auger-like data set ~0.1

Validation with hybrid events

- Combination of fluorescence tel. and ground array: independent event-by-event energy and X_{max}
- Directly measure S_{μ} (relying on known S_{EM}):

$$\mathbf{S}_{\mu,i} = \mathbf{S}_{i} - \mathbf{S}_{EM}(\mathbf{E}_{i}, \mathbf{\theta}_{i}, \mathbf{X}_{max,i})$$

- probe muon signal evolution S_(DG)
- measure N_{μ} at different θ :
 - consistency check of universality
- Caveat: have to rely on fluorescence energy scale

Conclusions

- EM signal and muon signal evolution universal
- Muon normalization can be inferred from data
- Method yields model- and primary-independent energy scale for ground detectors
- Measured N_{μ} places constraints on hadronic interaction models
- New model EPOS under investigation
- Application to Auger data presented by R. Engel, #605