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I Outline

* EAS universality at large core distances

I « Ground signal parametrization based on
universality

Determining number of muons and model-
independent energy scale

 Conclusion
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I Energy calibration of ground
arrays

Standard procedure so far:
I - determine S(ropt) from detector signals

- T depends on experiment (detector spacing)
. calibrate S(ropt) — E relation with simulations

* large systematic uncertainties in E calibration
— due to unknown hadronic interaction physics

Can we circumvent these unknowns ?
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I Idea of EAS Universality

- UHECR air shower: ~10'° particles

I * Details of hadronic interactions quickly
washed out for EM particles (e*/e’/y)

 Particle flux at ground A
. 7 |
only function of: y |
/ DG for this
- energy E LT tank
- zenith angle 6 e e

- distance to ground DG of shower maximum
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Universality of EM component

* Evolution of signals from EM particles in
I water Cherenkov tank — proton / iron at 10" eV
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* At 1000m from shower core

* "Flat tank" approximation
-> ho B-dependence

* Not including muon decay
products

 CORSIKA simulations with
QGSJetll / Fluka



I Universality of EM component

* ~12% difference b/w p/Fe - universality violation
I * independent of shower evolution
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I Universality of u component ?

« Again water Cherenkov signals at 1000m
I » Strong primary/model dependence
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I Universality of 4 component

signal normalization, not evolution !

I * Primary/model dependence in
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I Signal parametrization

- Based on universality:
I - S_,, known (given DG)
— SH evolution known

- U sighal normalization Nu unknown

-> {0 be determined from data
- DG given by mean depth of showers <X >

S(E,6,DG) = S_ (E, 6, DG) + Nu-/s“rre'(a, DG)

Reference: proton-QGSJetll at 10" eV
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I Determining Nu from data

I * Use isotropy of cosmic ray flux

constant intensity method:
N (>E)is equal in equal exposure bins in 0

events

- Showers at different zenith angles probe
different DG -> discern S_' from Su
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Constant intensity method

I o Nu = 0.5: too small ... Energy fixed at 10" eV
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o Nu = 2.0: too large ...

Sygnal at 1000m
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Signal at 1000m vs sec 0
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Constant intensity method

Energy fixed at 10" eV
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Sygnal at 1000m

Constant intensity method

o Nu = 1.0: right ...
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Signal at 1000m vs sec 0
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I Nu and the ground detector

I energy scale
I : Nu determined from data yields

model- and primary-independent ground
detector energy scale:

Ground signal (E, 6) = SEM(E, 0) + N... o

m(E)- S

6)

u,ref (

* based on universality
- systematic error in Nuaround 0.1 due to

universality violation and uncertainty on <X _ >
— statistical error for Auger-like data set ~0.1
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I Validation with hybrid events

- Combination of fluorescence tel. and ground array:
I independent event-by-event energy and X

max

 Directly measure Su (relying on known S_ ):
Su,i =S -S_(E,0,X )

i I’  max,l
- probe muon signal evolution SH(DG)
« Mmeasure Nu at different 0:

— consistency check of universality
« Caveat: have to rely on fluorescence energy scale
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I Conclusions

* EM signal and muon signal evolution universal
I * Muon normalization can be inferred from data

* Method yields model- and primary-independent
energy scale for ground detectors

- Measured Nu places constraints on hadronic
interaction models
* New model EPOS under investigation

* Application to Auger data presented by
R. Engel, #605
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