Nine-String IceCube Point Source Analysis

Chad Finley, Jon Dumm, Teresa Montaruli for the IceCube Collaboration

30th ICRC Merida, Mexico 2007 July 5

Method: Maximum Likelihood Analysis

Use unbinned maximum likelihood method: compare ratio of source likelihood (for number of signal events n_s) to background likelihood ($n_s = 0$).

• Partial Probability for each event

$$P_i(x, n_s) = \frac{n_s}{N} S_i(x) + \frac{N - n_s}{N} B_i(x)$$

$$L(n_s) = \prod P_i(x_i, n_s)$$

• Log Likelihood Ratio

Likelihood function

$$\log \lambda = \log \frac{L(\hat{n}_s)}{L(n_s = 0)}$$

Source hypothesis uses individual point spread functions for each event, based on angular uncertainty estimate of track reconstruction

Background hypothesis based on **declination distribution of data events** (i.e. scrambled in right ascension) **to correctly account for all backgrounds**

Select only up-going events. Three principle backgrounds remain:

- Down-going muons (from cosmic ray showers above the detector) misreconstructed as up-going
- Coincident muons (two muons from different cosmic-ray showers which reconstruct as single up-going event)
- => Reject with tight quality cuts
- Atmospheric neutrinos (from cosmic ray showers on other side of earth)
- => Genuine up-going events; "irreducible background" in search for extra-terrestrial neutrinos

Optimize Discovery Potential

Optimal cuts are those which can discover at 5-sigma significance the lowest source flux

Optimize Discovery Potential: Spectral Index Dependence

Detector Performance with Point Source Cuts Applied

Median Angular Resolution:

50% of simulated neutrino events (E⁻² spectrum) are reconstructed within **2° of their true arrival direction**

Muon Neutrino Effective Area for point sources in different declination ranges (assuming flux is equal mixture of neutrinos and antineutrinos).

Declination (zenith angle) effects:

• at high energies, earth absorption reduces rate of vertical upgoing tracks

Median 90% confidence level flux upper limit Φ^0 (as a function of declination) for point sources with differential flux: $d\Phi/dE = \Phi^0 (E / \text{TeV})^{-2}$.

(Specifically: in 90% of simulated trials, sources with the indicated flux or higher would result in a higher log-likelihood ratio λ than the median log-likelihood ratio (log λ = 0) that occurs for background-only trials.)

Sky-averaged sensitivity to point-source with E⁻² spectrum: $\Phi^0 = 12 \times 10^{-11} \text{ TeV}^{-1} \text{ cm}^{-2} \text{ s}^{-1}$. Comparable to AMANDA-II 2005 sensitivity (J. Braun talk)

Data Sample

Data taking in 2006 from beginning of June until end of November

Total livetime: 137.4 days

233 neutrino candidate events selected by cuts.

From simulation, expect background of:

- 227 atmospheric neutrinos (Bartol spectrum)
- < 10% mis-reconstructed downgoing muons

Merida, Mexico

First IceCube All-Sky Map

Significance (sigma)

Data Events (points); Galactic Plane (curve)

Results:

The maximum deviation is 3.35 sigma, at r.a. = 276.6° , dec = 20.4° .

Random clustering of background: **60%** of simulated background trials (data scrambled in right ascension), have a maximum deviation (anywhere) of **3.35 sigma** or greater.

Chance probability of the hottest spot = 60% ... not significant.

Source List Search

Data Events (points); Galactic Plane (curve)

Significance (sigma)

26 a priori Source Locations

90% C.L.

					upper mints	
	Object	(r.a. , dec) :	sigma	n _s est.	n _s	Φ
For source list:						
	MGRO J2019+37	(304.8, 36.8) :	0.00	0.0	2.8	12.7
	Cyg OB2/TeV J2033+4130	(308.3, 41.3) :	0.23	0.2	2.9	14.0
Largest deviation from background: sigma = 1.77 (one-sided p-value = 0.04),	Mrk 421	(166.1, 38.2) :	0.00	0.0	2.9	13.1
	Mrk 501	(253.5, 39.8) :	0.00	0.0	2.7	11.5
	1ES 1959+650	(300.0, 65.2) :	0.00	0.0	3.3	14.6
	1ES 2344+514	(356.8, 51.7) :	0.00	0.0	2.8	11.4
	Н 1426+428	(217.1, 42.7) :	0.00	0.0	3.0	14.5
	BL Lac (QSO B2200+420)	(330.7, 42.3) :	0.28	0.4	3.2	15.7
in the direction of the Crab	3C66A	(35.7, 43.0) :	0.00	0.0	3.0	13.3
	3C 454.3	(343.5, 16.1) :	1.08	0.7	3.6	14.4
Nebula.	4C 38.41	(248.8, 38.1) :	0.00	0.0	2.8	12.6
	PKS 0528+134	(82.7, 13.5) :	0.00	0.0	2.8	10.3
Chance to obtain a p-value of	3C 273	(187.3, 2.0) :	0.00	0.0	2.5	11.0
	M87	(187.7, 12.4) :	0.67	0.5	3.2	11.4
	NGC 1275 (Perseus A)	(50.0, 41.5) :	0.00	0.0	2.8	13.4
0.04 or lower with 26	Cyg A	(299.9, 40.7) :	0.41	0.4	3.0	14.5
	SS 433	(288.0, 5.0) :	0.12	0.1	2.4	8.2
independent trials is 65%.	Cyg X-3	(308.1, 41.0) :	0.51	0.4	3.0	14.5
	Cyg X-1	(299.6, 35.2) :	0.52	0.4	3.0	12.2
None of the a priori source	LS I +61 303	(40.1, 61.2) :	0.00	0.0	3.2	14.2
	GRS 1915+105	(288.8, 10.9) :	0.00	0.0	2.8	9.8
	XTE J1118+480	(169.6, 48.0) :	0.00	0.0	2.8	12.4
	GRO J0422+32	(65.4, 32.9) :	0.65	0.8	3.1	13.5
	Geminga 98.48	(17.8, 0.6) :	0.65	0.8	3.0	16.4
significant excess.	Crab Nebula	(83.6, 22.0) :	1.77	1.6	5.2	21.8
	Cas A	(350.9, 58.8) :	0.67	0.5	4.4	19.9

 Φ Flux Units: 10⁻¹¹ (*E* / TeV)⁻² TeV⁻¹ cm⁻² s⁻¹

2006: IceCube 9 strings

Nine strings were taking data last year. Detector livetime was 137.4 days.

First point-source analysis with IceCube data demonstrates detector performing according to expectations and in agreement with detector simulation.

Point source sensitivity is comparable to equivalent livetime of AMANDA II detector.

2007: IceCube 22 strings

Twenty-two strings deployed and currently taking data.

Much improvement in point-source sensitivity expected, due to:

- Doubling of detector volume
- Improved angular resolution, over wider range of azimuth
- Continued development of track reconstruction and background rejection algorithms

IceCube on course to achieve unsurpassed sensitivity well before construction is completed.