The ANTARES detector:

S. Escoffier

CNRS Centre de Physique des Particules de Marseille

on behalf of the ANTARES Collaboration

Detection Principle

Background sources

Atmospheric muons and neutrinos

Rejection of the atmospheric background

Atmospheric muons

Optical Modules oriented downward
Detector at great depth (~2475 m)

Advantage: • μ_{atm} can be used for flux measurement

 μ_{atm} can be used for pointing accuracy (moon shadow)

Problem: Some μ_{atm} can be reconstructed as upgoing

Atmospheric neutrinos

Point-like sources:

Reduced background (see J. Aguilar's talk) Diffuse flux:

Energy spectral index E^{γ} :

 γ =-3.7 for vatm

 γ =-2.2 / -2.0 for v from cosmic accelerators

S. Escoffier, ANTARES background sources and effects

Optical background

Bioluminescence bursts:

Animal species which emit light by flashes, spontaneous or stimulated around the detector.

Baseline: ⁴⁰K decays Bacteria luminescence

Baseline variations

Effects of the background

Such a study requires detailed simulations for various values of baseline/burst fraction for each physics channel

Impact of bioluminescence will be very different for:

Diffuse sources: no pointing accuracy, high energy cut ~50 TeV
Point sources: high pointing accuracy, no or moderate energy cut
Transient sources: reduced background due to time constraint
Dark matter = low energy

Neutrino effective area

Neutrino effective area

Impact on the data acquisition

Baseline < 300 kHz

All data to shore

Baseline > 300 kHz

Sampling: N / M frames are transmitted to shore

Off-shore trigger L1: only local coincidences transmitted to shore

Bioluminescence burst > 500 kHz

High rate veto: OM data is not transmitted to shore during burst.

S. Escoffier, ANTARES background sources and effects

Some ideas are being studied...

Standard trigger

Online Data filter

Level 1 Trigger (L1):

- Look for local coincidences (2/3 OMs in the same storey)
- or Charge > 3 p.e. on a single OM

Old trigger :

N local coincidences anywhere inside the detector

Problem: For N=5,

accidental trigger rate increases as \propto f 10

Standard trigger

Online Data filter

Level 1 Trigger (L1):

- Look for local coincidences (2/3 OMs in the same storey)
- or Charge > 3 p.e. on a single OM

Old trigger :

N local coincidences anywhere inside the detector

Problem: For N=5,

accidental trigger rate increases as \propto f 10

New trigger :

N local coincidences with a 3D causality trigger

One event produce hits in cluster of storeys

S. Escoffier, ANTARES background sources and effects

Alternatives trigger

To remove noise hits...

Cluster trigger :

Cluster T2 = Two L1 in adjacent storeys

Cluster T3 = Two L1 in next to adjacent storeys

Alternatives trigger

To remove noise hits...

Cluster trigger :

Cluster T2 = Two L1 in adjacent storeys

Cluster T3 = Two L1 in next to adjacent storeys

Causality algorithms : N x T2/T3 with a causality requirement

➔ Work in progress

Conclusion

Review of the bioluminescence activity

2007 (6 months)

S. Escoffier, ANTARES background sources and effects

Latest bioluminescence activity

Bioluminescence activity is very low since one year

Conclusions

Background sources are being understood

Some seasonal effects can appear, due to biological activity

Studies are still in progress:

• To evaluate precise effects of high bioluminescence activities on the detector performances (effective area, pointing accuracy, dead time, ...)

• To optimize trigger and reconstruction efficiency at high bioluminescence levels

Bioluminescence activity is low since 1 year → A lot of data to analyse

