Ultradhigh Energy Neutrinos with a Mediterranean Neutrino Telescope

E. Borriello1,2, A. Cuoco3, G. Mangano1, G. Miele1,2, S. Pastor2, O. Pisanti1, P. D. Serpico4

1Dipartimento di Scienze Fisiche, Universitá di Napoli "Federico II" and INFN Sezione di Napoli, Compresso Universitario di Monte S. Angelo, Via Cintia, Napoli, 80126, Italy
2Instituto de Física Corpuscular (CSIC-Universitat de València), Ed. Institutos de Investigación, Apdo. 22085, E-46071 Valencia, Spain
3Institut for Fysik og Astronomi, Aarhus Universitet Ny Munkegade, Bygn. 1520 8000 Aarhus Denmark
4Center for Particle Astrophysics, Fermi National Accelerator Laboratory, Batavia, IL 60510-0500, USA

Ofelia Pisanti @ ICRC 2007 - Merida
Why to detect UHEν at a 1 Km3 Neutrino Telescope?

- The extragalactic contribution dominates: extragalactic astronomy

- It is possible to measure simultaneously the neutrino flux and the ν-Nucleon cross section, at energies and kinematical regions never tested. Events ν_τ and ν_μ induced.
The rate of τ-μ events in 1 Km3

$$\frac{dN_l}{dt} = D \sum_a \int d\Omega_a \int dS_a \int dE_v \frac{d\Phi_v(E_v)}{dE_v d\Omega_a} \int dE_l \varepsilon(E_l) \cos(\theta_a) k_a(E_v, E_l; \vec{r}_a, \Omega_a)$$

Same calculation for Auger in PLB634:137-142,2006

Probability that an incoming ν, with energy E_v and direction Ω_a, crossing the earth or the water, produces a lepton l which enters the fiducial volume with energy E_l, through the lateral surface dS_a at the position \vec{r}_a.

Fiducial volume, no experiment characteristics, just able to recognize τ-μ

$a = W, E, S, N, U, D$
Nemo experiment

Digital Elevation Map (DEM)

- Site Location
 36°21' N, 16°10' E

- Average Depth
 ~3500 m
 (3424 in our simulation)
Apertures for τ tracks crossing the rock in Nemo Matter Effect!

\[
\frac{dN_\tau}{dt} = \sum_a \int dE_\nu \Phi_\nu(E_\nu) A_a(E_\tau)
\]
Disentangling flux from cross section

The number of rock/water events is a good estimator of ν flux and ν-Nucleon cross section.
Lepton energy loss in the detector

- μ and τ contributions summed and real observable considered, that is the energy deposited in the detector.

$$\Delta E_l \cong \lambda(\vec{r}_a, \Omega_a) \beta_l E_l \rho_w$$

- Detected events properly binned for energy loss and arrival direction to constrain flux and cross section.

$$N_{ij} = T \sum_{\alpha=\mu,\tau} \sum_a \int_{X_i} d(\Delta E) \int d\Omega \int dS_a \int dE_v \frac{d\Phi_v(E_v)}{dE_v d\Omega_a} \frac{\cos(\theta_a)}{\lambda(\vec{r}_a, \Omega_a)} k_a(E_v, E_l; \vec{r}_a, \Omega_a)$$

X_i=energy loss bin
Y_j=direction bin
Constraining parameters

- Waxman-Bahcall neutrino flux

\[
\frac{d\Phi_\nu(E_\nu)}{dE_\nu d\Omega_{\alpha}} = C \cdot 1.3 \cdot 10^{-8} E_\nu^{-2} \text{GeV}^{-1} \text{cm}^{-2} \text{s}^{-1} \text{sr}^{-1}
\]

- Generalization of standard cross section (change in energy slope)

\[
\frac{\sigma^{\nu N}_{CC}}{10^{-33} \text{cm}^2} = \begin{cases}
0.677 \cdot 10^{-3} \frac{E_\nu^{0.492}}{E_1} & E_\nu \leq E_1 \\
0.344 \left(\frac{E_\nu}{E_1}\right)^{0.492} & E_\nu > E_1
\end{cases}
\]

- Multi-Poisson likelihood analysis, with \(L = \exp(-\chi^2/2) \) and

\[
\chi^2 = 2 \sum_{ij} \left[(N_{ij}^0 - N_{ij}) + N_{ij}^0 \ln \left(\frac{N_{ij}^0}{N_{ij}} \right) \right]
\]

\(N_{ij}^0 = \# \text{ of events for the reference model} \)

\(N_{ij} (A,C,D) = \# \text{ of events in the i energy and j direction bin} \)

\(E_1 = 10^{5.5} \text{ GeV} \)

Marginalized likelihoods and contour plots for two energy and three angular bins and an exposure time of 5 years.

\[0.6 \leq A \leq 1.1 \text{ (68\% CL)} \quad -0.1 \leq \log C \leq 0.2 \text{ (68\% CL)} \]
Marginalized likelihoods and contour plots for two energy and three angular bins and an exposure time of 5 years.

\[0.95 \leq D \leq 1.15 \ (68\% \ CL) \]

\[-0.1 \leq \log C \leq 0.2 \ (68\% \ CL) \]
Marginalized likelihoods and contour plots for two energy and three angular bins and an exposure time of 5 years.

\[0.6 \leq A \leq 1.1 \text{ (68\% CL)} \]

\[0.95 \leq D \leq 1.15 \text{ (68\% CL)} \]
Conclusions and outlook

• UHE ν detection allows for extragalactic ν-astronomy, and makes possible the simultaneous measurements of the νN cross section at energy ranges never explored before (New Physics?), and the value of astrophysical neutrino flux. This can be done using the different behavior of the number of events in different energy and arrival direction bins.

• Simple parameterizations of flux and cross section have been considered, but work is in progress for more general expressions.