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Abstract: We study the dependence of the exponent y of the power law rigidity R spectrum of the
galactic cosmic ray (GCR) intensity variations ($D(R)/D(R) «cR ) on the range of the GCR particles

rigidity using data of neutron monitors and ground meson telescopes. We found that the rigidity spec-
trum of the GCR intensity variations is hard for neutron monitors with the effective rigidities ~10-
15GV and soft for neutron monitors and ground meson telescopes with the effective rigidities ~25-
S0GV. Based on the early found relationship between the rigidity spectrum exponent y of the GCR
variations and the exponent v of the power spectral density (PSD) of the IMF turbulence it was shown
that the change of the exponent y versus the rigidity of the GCR particles is stipulated by the changes
of the exponent v versus the frequencies of the IMF turbulence. Namely, when the frequency de-
creases (or a rigidity of GCR particles increases) the exponent y increases; so, in limit, when v—> 0,

y—> 2.

Introduction

We assume that a general reason of the 11—year
variation of the GCR [1,2] should be a change of
the character of diffusion of GCR particles versus
solar activity. Of course, our assumption is con-
cerning with the energy of GCR to which neuron
monitors and ground muon telescopes respond
(>5 GeV). For the diffusion—convection approxi-
mation the diffusion coefficient y depends on the
rigidity R of GCR particles as, 5o R”
[3-7]. The parameter a is related with the parame-
ter v as, ¢ =2—v; the parameter v is the exponent

of the PSD of the IMF turbulence (PSD o f ™V,
where f is the frequency). Based on the experi-

mental data and theoretical modeling it was
shown that an apparent relationship exists be-
tween the rigidity spectrum exponent ¥

(6D(R)/D(R) «R ) of the GCR intensity varia-
tions and the exponent vV of the PSD of the IMF
turbulence, namely, v =~ 2 -y [8-11]; so, the tem-

poral changes of the rigidity spectrum exponent
¥ should be considered as a vital index (calculat-
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edly from the experimental data) to study the 11—
year variations of the GCR intensity and to esti-
mate the exponent v of the PSD of the IMF turbu-
lence ~(10°-10)Hz.

The relationship y = 2—v owing to dependence of
the exponent v on the frequency of the IMF tur-
bulence [12] should be a cause of the reliance of
the exponent y on the rigidity R of the GCR parti-
cles, i.e. there should be existed the dependence
of the exponent y on the frequency f of the IMF
turbulence. Namely, when the frequency f de-
creases (or a rigidity R of GCR particles in-
creases) the exponent y increases; so, in limit,
when v—> 0, y— 2 [13].

Experimental Data and Discussion

The first indication of such a dependence was
point out in paper [8] based on the neutron moni-
tors experimental data. To manifest the depend-
ence of the exponent y on the rigidity R of the
GCR particles we calculate the rigidity spectrum
exponent y of the GCR intensity variations and
exponent v of the PSD of the IMF turbulence for
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the two frequency ranges corresponding to the
various resonant energy of the GCR particles for
three periods: 1-1966-1970, 11-1981-1984, and
I11-1989—1991. For the I period (1966—-1970) we
use data of the first pair of neutron monitors,
Inuvik—Potchefstroom (average effective rigidity
~10-15 GV), and data of second pair—
Potchefstroom—Huacayo (average effective rigid-
ity ~20-25 GV).

A
v b
1.6 4
1.2 4
0.8 - =
0.4 -
Year
D 1 1 1 1
1965 1966 1967 1968 19569 1970

Figure 1: Temporal changes of y for different
effective rigidity range of GCR for period of
1966-71(RP-1965), a-for neutron monitors Inu-
vik- Potchefstroom (effective rigidity ~ 10-15
GV), b- for neutron monitors Potchefstroom-
Huacayo (effective rigidity ~ 20-25 GV),
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Figure 2: The temporal changes of the exponent v
of PSD of the By component of the IMF turbu-
lence: a - in the frequency range 1x107-2x107°
Hz, b-1x10°-4x10"° Hz
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Figure 3: Temporal changes of y for different
effective rigidity range of GCR for period of
1981-84(RP-1986), a-for neutron monitors: Cli-
max, Goose Bay, Jungfraujoch, Potchefstroom
(effective rigidity ~10-15 GV), b- for neutron
monitors Hermanus, Huancayo, Potchefstroom,
Tbilisi and meson telescope of Nagoya N3EE
(effective rigidity ~25-30GV),
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Figure 4: as in figure 2

In the figure 1 are presented the changes of the
rigidity spectrum exponent y of the GCR intensity
variations for the first pair of neutron monitors
(a), and (b), for the second pair of neutron moni-
tors. In the figure 2 are presented the changes of
the exponent v of PSD of the By component of
the IMF turbulence a - in the frequency range
1x107-2x10° Hz, b- 1x10°-4x10° Hz; corre-
sponding effective rigidity ~ 20-25 GV and
effective rigidity ~10-15 GV respectively.
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Figure 5: Temporal changes of y for different
effective rigidity range of GCR for period 1989-
91(RP-1987), a-for neutron monitors: Climax,
Hermanus, Inuvik, Kiel, Moscow, Potchefstroom,
Thilisi (effective rigidity ~ 10-15 GV), b- for
monitors Alma- Ata, Hermanus, Huancayo,
Potchefstroom , Thilisi and meson telescopes of
Nagoya NIWW, N1SS (effective rigidity ~ 25-30
GV),
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Figure 6: as in figure 2

For the II period (1981-1984) we use data of
neutron monitors: Climax, Goose Bay, Jungfrau-
joch and Potchefstroom (effective rigidity ~ 10—
15 GV), and data of neutron monitors; Hermanus,
Huancayo, Potchefstroom and Tbilisi, including
muon telescope of Nagoya, N3EE (effective en-
ergy ~25-30 GV. For the III period (1989-1991)
we use data of neutron monitors: Hermanus,
Inuvik, Kiel, Moscow, Potchefstroom, Thbilisi
(effective rigidity ~ 10-15 GV), and data of neu-

519

tron monitors: Alma—Ata, Hermanus, Huancayo,
Potchefstroom, Thbilisi, including muon telescopes
of Nagoya, NIWW and NI1SS (effective energy
~25-30 GV). In the figures 3 and 5 are presented
the changes of the rigidity spectrum exponent y of
the GCR intensity variations for neutron monitors
(a) and (b) for neutron monitors including muon
telescopes of Nagoya.

In the figures 4 and 6 are presented the changes of
the exponent v of PSD of the By component of
the IMF turbulence correspond to the above men-
tioned periods.

Figures 1,3 and 5 show that there are the signifi-
cant differences between the values of the expo-
nent y for low (~10-15 GV) and high (~25-30
GV) ranges of rigidities of the GCR particles
Figures 2,4,6 show that exponent v in the range
frequencies 1x107-2x10° Hz is less than expo-
nent v in the range frequencies 1x10°-4x10° Hz.
So, we prove our assumption that the rigidity
spectrum exponent y of the GCR intensity varia-
tions increases versus the rigidity of GCR parti-
cles. The relationship, y = 2—v found in [9] gives
a possibility to prove an existence of, at least, two
important facts; the first: the 1l-year temporal
changes of the rigidity spectrum exponent y of the
GCR intensity variations are related with the
changes of the exponent v of the PSD of the IMF
turbulence versus solar activity, and the second—
the change of the exponent y versus the rigidity of
the GCR particles is stipulated by the changes of
the exponent v versus the frequencies of the IMF
turbulent [14].

Conclusion

1. The rigidity spectrum of the GCR iso-
tropic intensity variations is harder for
the effective rigidities ~ 10-15 GV (for
neutron monitors data), than for the ef-
fective rigidities ~ 25-30 GV ( for neu-
tron monitors and ground muon tele-
scopes data).

This result clearly supports that the quasi
linear theory of GCR modulation is valid
for the rigidities ( 5-50 GV) to which
neutron monitors and ground muon tele-
scopes respond.
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