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1Dpto. Ingenieŕıa Informatica, Univ. Antonio de Nebrija, 28040 Madrid, Spain.
2Dpto. F́ısica Atomica, Univ. Complutense, 28040 Madrid, Spain
cmalagon@nebrija.es, barrio@gae.ucm.es

Abstract: The problem of identifying gamma ray events out of charged cosmic raybackground (so called
hadrons) in Cherenkov telescopes is one of the key problems in VHE gamma ray astronomy. In this
contribution, we present a novel approach to this problem by implementingdifferent classifiers relying on
the information of each pixel of the camera of a Cherenkov telescope, rather than using common Hillas
parameter analysis. Separation between gamma-like and hadron-like is performed using several machine
learning techniques, trained using Monte Carlo data samples of both types of events.

Introduction

Since Hillas parameter analysis was developed
back in 1985 to separate between gamma-like and
hadron-like events as recorded by Cherenkov tele-
scopes [1], many techniques have been used for
gamma/hadron separation based on such parame-
ters. Bock et al. [2] performed a case study for
most of these techniques, to be later applied to
MAGIC telescope gamma event selection. How-
ever, all these techniques might not be using the
whole potential of a Cherenkov telescope, as they
use Hillas parameters (second moments of image
in telescope camera) as input. In this work we pro-
pose to apply usual machine learning techniques
(some of them, mentioned in [2]) to the full im-
age recorded by a Cherenkov telescope, on a pixel-
by-pixel base. We will demonstrate the method on
images produced by the MAGIC telescope simu-
lation and reconstruction package [3, 4]. Possible
advantages of this approach are the use of the full
information in the camera, and a more natural way
to treat fluctuations in the image, thus permitting
a relaxation of the image cleaning and a likely re-
duction of the telescope software threshold. Some
inconvenients of this approach come from the fact
that certain effects very difficult to simulate (like
bright stars in the Field of View), can play a certain
role in a pixel-by-pixel analysis, while only a mi-
nor effect on a Hillas parameter analysis. Another

approach also based on pixel-by-pixel information
was already developed by Le Bohec et al. [5] for
the CAT telescope. However, this approach did not
use machine learning techniques, but a maximum
likelihood technique to compare images from sim-
ulated showers against analytical expressions from
shower development in the atmosphere.

Data sample

For this study, we have used gamma and pro-
ton events (as the latter represents the majority
of hadronic cosmic rays) simulated with Corsika
code [6], plus MAGIC Reflector and Camera re-
construction standard software. Each event con-
sists of an image based on the calibrated photoelec-
tron content in each pixel of the MAGIC telescope
camera. The pixels whose signal is likely to orig-
inate from NSB or electronic noise are removed
from the image using the so-called image clean-
ing procedure [7], with 10 photoelectron threshold
for core pixels and 5 photoelectron threshold for
boundary pixels.
Gamma and proton samples consist of 28750
events. Image total photoelectron spectrum of
gamma sample resembles that of typical cosmic
sources. Corresponding spectrum of proton sam-
ple is forced with similar slope to avoid biasing the
selection procedure.
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In what follows, we will briefly describe the differ-
ent classifiers used in the experiment, composed by
individual or ensemble classifiers.
To begin with, we have used three individualclas-
sifiers for our experiments: A brief description of
each of them follows, with a deeper description in
references below:

• Decision trees - construction of decision or
classification trees using Quinlan’s C4.5 al-
gorithm [8].

• Multilayer Perceptron - a feed forward artifi-
cial neural network trained with the classical
backpropagation algorithm [9] .

• K-NN - K Nearest Neighbour algorithm [10]
with K=11 and euclidean distance metric.

Regarding ensemble classifiers, which will only
be applied to decision trees classifier, we will
deal with multiple classifier systems generally de-
scribed as voting classification algorithms, i.e.,
techniques in which we use several individual clas-
sifiers that output a particular prediction or label
for each of the examples of the test data set. These
predictions are then combined to produce a single
output, the output of the ensemble, by majority vot-
ing decision.
We used two different voting algorithms:

• Boosting - We used the Adaboost algorithm
[11] implemented in Weka [12].

• Bagging - Classical ensemble method devel-
oped by Breiman [13].

Let us make a brief description of this two ensem-
ble methods: both are combinations of individual
classifier (decision trees in our case) and they
output a prediction based on majorityvote. The
main difference between these algorithms is the
way they build the training set. Bagging con-
struct training subsets sampling from the original
training set with replacement (i.e. some examples
could be repeated in each subset). Then it builds
a model for each of the subsets and combines
the output of the different models typically by
majority voting. Boosting method builds up the
different subsets by samplingexamples without
replacements. The key point is that boosting

method constructs every model paying special
attention to those examples that previous model
classified incorrectly.

Results

All these machine learning methods have been fed
with above described gamma and proton samples,
using a typical holdout validation method (two
thirds of them for training and the rest for testing
purposes).
Results from the different methods, presented in
terms of ROCc (Receiver Operating Characteris-
tic curves) for different classification methods,
are shown in figures bellow: vertical axis shows
gamma acceptance while horizontal one represents
hadron acceptance. Q (quality factor) curve for
energies lower than 200 GeV is also presented;
Q curve is defined asQ = ǫγ/

√
ǫh, where ǫγ

is the gamma acceptance andǫh is the hadron
acceptance.

All the methods have been applied both to the
whole gamma and proton sample and to subsam-
ples, depending of incident energies. Figure 1 and
2 show the ROC and Q factor curves respectively
for samples with energies lower than 200 GeV.
Both where compared with results in López [14],
graphically displayed using point style. López
results represent a practical realization of Bock et
al. [2] Random Forestclassification method (equiv-
alent to outBaggingensemble of decision trees),
applied to MAGIC telescope current configuration.
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Figure 1: ROCc for energies lower than 200 GeV
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One has to emphasize that all methods are applied
on a pixel by-pixel basis, even classification trees
ones. Ensemble methods (also known as multiple
classifier systems) show superior behaviour as
compared to its individual classifier (decision
trees), and similar to K-NN method. Only within
highest energies decision trees (the weak learner
we have combined in ensembles) perform well. On
the other hand, artificial neural network shows the
worst performance of the whole set of classifiers.
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Figure 2: Q factor vs hadron acceptance for ener-
gies lower than 200 GeV

Figure 3 shows the results when classifying the
whole data set. Boosting trees show results com-
parable with those in Bock et al [2], graphically
displayed using point style as well.
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Figure 3: ROCc for total events

Discussion of results

Let us first examine the results of Nearest Neigh-
bours algorithm. Our first intuition, based on do-

main knowledge when we began this work, was
that Nearest Neighbours could be a good choice.
This intuition was based on the fact that K-NN has
a strong geometrical character.
Nearness is calculated using a similarity measure
between the different instances, typically the eu-
clidean distance. Therefore it has a strong ge-
ometrical dependence, as our domain representa-
tion, and therefore we can include a priori infor-
mation on the camera geometry. We believe this
is the reason why Nearest Neighbours technique
could stand out from the other single predictors,
and results have confirmed our early prediction.
Regarding the ensemble methods, we have com-
bined decision trees, and we have obtained compa-
rable results to those from Hillas parameter analy-
sis in previous works [2]. Decision trees is a good
model to be combined in ensembles because of its
large variance (different training sets lead to com-
pletely different models). These combinations nor-
mally result in an enhancing of the accuracy of any
single decision tree, though it depends on the do-
main characteristics.
The behaviour for events with energies lower than
200 Gev show a sizeable improvement with re-
spect to results in Ĺopez [14], both for ROC and
Q curves. Q for a gamma acceptance level of
0.7 (typical value for MAGIC standard analysis)
shows an increase of 25%. In terms of the ROC
curve, if we consider for example a value of 0.2 for
hadron acceptance, we obtain an increase close to
50% for gamma acceptance.

Conclusions and outlook

Separation between simulated gamma-like and
hadron-like events (as reconstructed by the
MAGIC Cherenkov Telescope) is performed using
several machine learning techniques applied to
pixel-by-pixel defined images. Both ensembles
of classification trees and K Nearest Neighbours
show similar performance as for Bock et al. [2]
classifications methods (without any restriction
on the energy of the primaries). Our results also
show a better performance as compared to those
in López [14] for events with energies lower than
200 GeV.
Among all individual classifiers, the algorithm that
shows the best accuracy is K Nearest Neighbours.
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This is a very interesting algorithm (regarding our
domain representation) that shows a similar result
than multiples classification systems at lower en-
ergies and outperform them when higher energies
are also considered. This is a consequence of the
strong geometrical dependence of this domain as
we are solving the problem of identify gamma ray
events relying on the information of each pixel
of the camera of a Cherenkov telescope. These
classifiers were also discussed in terms of event
energies, showing promising results for events
with energies below 200 GeV. We have demon-
strated that this approach could be comparable to
common Hillas parameter analysis but without the
requirement of any additional data transformation.
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