dapnia

saclay

CPPM

Sensitivity study for the cubic-kilometre deep-sea neutrino telescope - KM3NeT

J. Carr¹, D. Dornic¹, F. Jouvenot², U.F. Katz³, S. Kuch³, G. Maurin⁴, R. Shanidze³ for the KM3NeT consortium

¹ CPPM – Centre de Physique des Particules de Marseille, CNRS/IN2P3 – France ² University of Liverpool, Oliver Lodge Laboratory - United Kingdom ³ University of Erlangen-Nuremberg, Physics institute - Germany

⁴ CEA Saclay - DSM/DAPNIA – Service de Physique des Particules - France

Introduction

Configuration 1: hexagonal

Most models of astrophysical source predict HE neutrinos emission. Stable (E_>100 GeV) and neutral, they can propagate through the Universe unaffected. Recent results from TeV gamma-ray astronomy indicate that **at least a km³** scale detector is needed to detect potential neutrino sources (AGN, GRB, PWN, SNR...)

SNR RXJ1713,7-3946

Today, the European consortium, KM3NeT, works on a design study for a large deep-sea neutrino telescope. Placed in the northern hemisphere (Mediterranean sea), it will survey a large part of the Galaxy, including Galactic Centre and be complementary with the IceCube telescope currently in construction in the South Pole.

Neutrino effective area

Obtained after a full simulation and reconstruction chain

Configuration 2: multi-PMTs

Expected events from main galactic sources observed in TeV gamma-ray astronomy

Expected neutrino flux from TeV gamma-ray measurements:

- Pure hadronic model is assumed: high energy gamma rays produced only in p-p collisions
- Galactic sources: no significant absorption of γ radiations during their propagation

1 multi-PMT

21 x 3" PMTs

- After to neutrino oscillations, the number of v_{μ} (including anti-neutrinos) from the source is equal to the number of gamma produce by π^0 disintegration
- For the background, only atmospheric neutrinos are simulated (no atmospheric muon)
- Extended sources (high background from at

 α : spectral index ε : cut-off energy

atmospheric neutrinos)					N_v / N_{atm} with $E_v > 1$ TeV after 5 year			
					Detection		Reconstruction	
Source Name	$oldsymbol{\phi}(\circ)$	κ _υ	Γ_{v}	ϵ_{v}	Conf. 1	Conf. 2	Conf. 1	Conf. 2
Vela X	0,80	11,75	0,98	0,84	5.0/4.2	23.6 / 34.0	2.1 / 1.9	10.0 / 13.0
RXJ1713.7-3946	1,30	15,52	1,72	1,35	3.4 / 17.3	15.8 / 61.0	1.4 / 8.1	6.4 / 23.3
RXJ0852.0-4622	2,00	16,76	1,78	1,19	3.5 / 43.3	15.8 / 154.5	1.4 / 19.6	6.4 / 59.0

In conclusion, we need few 10 years to detect extended galactic sources like SNR and PWN.

The detector needs to be bigger than 1 km³

Contacts: ddornic@cppm.in2p3.fr gilles.maurin@cea.fr

30th International Cosmic Ray Conference 2007 – Merida – Yucatan - Mexico