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1 Introduction
Transport of charged cosmic rays In the interplaneta

Space was

discussed by many authors (e.g. Jokipii 1946,

Bieber et al. 1994) and remains an interesting and impd-
tant field of astrophysical research. One theoretical chdl-

lenge Is the understanding of observed mean free paths

the cosmic

and perpendicular to the magnetic field of the &in _ |

Here we compare different theoretical results for parall§l Plasmawave efiects are neglected in the damping and rqn- 1 | .

diffusion with the Palmer consensus (Palmer 1982) arld dom sweeping moc_:lel. The most serious problem is that the %_ - - —
oickup ion observations (Gloeckler et al. 19956iius et observed perpendicular mean free paths cannot be repyo- |

al. 1998).

are compared with the Palmer consensus (Palmer 19gp), Mmodels (Shalchi & Schlickeiser, 2004),
Jovian electrons (Chenette et al. 1977), and Ulysses mga-

particles which experience scattering parallel

Theoretical results for perpendicular diffusio

surements of Galactic protons (Burger et al. 2000).

If a diffusion coefficient is calculated theoretically, the
turbulence properties have to be specified by specifyirlg bulence model, which we call thHélonlinear Anisotropic
the correlation tensor?,,(k,t) = <5BZ(IZ, )6 B* (k, O)>
which is determined by the wave spectrum (wavenumbgr al. 2006). In this model we still assume composite geome-  radius, 1., =slab bendover scale) obtained within the NADT-model. Shown
dependerlce Oﬂm(E, t))L the turbulence geometry (orien-

of €ral problems assoziated with the Bieber et al. (1994) ap- 10°

iInertial- and dissipation-range. According to Figs. 1 and Z3 combination of the NADT-
As demonstrated in several articles (e. g. Bieber et 4l. model, QLT and NLGC-theory can explain the observed
1994, Dibge 2000), a combination of QLT with the damp{ parallel and perpendicular mean free paths in the helio-
iIng model of dynamical turbulence is able to reproduce te sphere.

observed parallel mean free path. However, there are s¢v-

oroach. First, the formi(k, ) = exp (—awvy4 | k | ¢) and the
parametery cannot be derived theoretically. Furthermoreg

duced by combining QLT with such dynamical turbulencg

4 The NADT-model T 0 102

R=R /Il
To solve these problems we recently proposed a new tgr- L slab

Dynamlcal Turbulence model(NADT—modeI, Shalchi et Fig. 1: The parallel mean free path A versus R = Ry /lgaw (R =Larmor-

try and the wavespectrum used in Bieber et al (1994) Nt are QLT results for electrons (red) and protons (blue) in comparison with the
' ’ Palmer consensus (Palmer 1982, orange), Ulysses observations (Gloeckler

tation of k relative to B;), and the time-dependence off we assumed different forms 9f the slab aﬂd the 2D dynanfi- et al. 1995, black) and AMPTE spacecraft observations (Mébius et al. 1998,

— _ : | | rrelation functionsP __ pslab L Fslab Lot green). The discrepancy between the different observations can easily be un-
le(k’t)' To SpeC.Ify the Wavespectrum for instance, w CaQDC(_), eﬂ;?ltO unctions lm(k’t) im ( ) ( I> ) T derstood: the Gloeckler et al. (1995) result for instance, was at a heliocentric
can use observations (e.g. Denskat & Neubauer 198®). P (k)" (k,,t). distance of 2.34 AU, whereas the other observations were at 1 AU.

Such a measured spectrum can be divided into three intpr- In earlier treatments of dynamical turbulence, the decoy-
vals which can easily be distinguished: for small wavenun- relation factorsFi(E, t) were established using simple ap
ber we find a flat spectrum which can be approximated [y proximations to the interactions responsible for temporgl
a constant (energy-range), for intermediate wavenumbdgrs decorrelation of excitations near wave vector In ran-

we find a kolmogorov-like behaviour{ k=3, inertial-

range), and for large wavenumbers a steep behaviour dan gle parameter is introduced to estimate the rate of decqr-

be seen{ k2, dissipation-range). Also the turbulence ge

ometry can
Bieber et al

be obtained from measurements. According fo
. (1994), a composite model which consists ¢f

dom sweeping and damping models, for example, a sip-

relation at scald /k and this is assumed to be related tc
the Alfven speed4. To improve these models, we note -
that in recent years there has been a more complete under-

| (AU

a superposition of a slab modél ( l?o) and a 2D model standing of the time scales of MHD turbulence (e.g. Zho 10

(E 1 EO) should be appropriate. More difficult to spec{ et al. 2004), and the relation these may have to interagc-

Ify Is the time-dependence. By introducing the dynamicgl tions between excitations that may be associated with ¢i- 10 . .

correlation functionl'(%, ¢), the correlation tensor can be| ther low frequency or wavelike components of the turb 107 107 Rp /110 107 10°

—

written asPy,,(k,t) = P.(k)T(k,t). In the following sec-

tion we discuss several models for the wave spectrum, the

lence spectrum (Matthaeus et al. 1990, Tu & Marsch, 1998,
Oughton et al. 2006). These ideas may be used to detgr- Fig. 2: The perpendicular mean free path \, versus R = R;/l,., obtained

turbulence geometry, and the functibfi;, ¢). mine reasonable approximations to the functibh€(k, ¢) within the NADT-model. Shown are the NLGC-results for electrons (red) and
oD /T : : _ protons (blue) in comparison with the Palmer consensus (1982, orange), Jo-
andl’ (ka t) (fOI’ detalls see Shalchi et al. 2006)- vian electrons (Chenette et al. 1977, black) and Ulysses measurements of
1 _ | Galactic protons (Burger et al. 2000, green).
2 The standard quasilinear ap polab(fo §) = ¢t/ . gt
2D - —t To2D
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lem);

2) the observed parallel mean free paths are generally cqn-

the predicted SQLT results (magnitude prob-

stant with a rigidity independent mean free path for 0.5 tp
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