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Abstract: The Main Injector Neutrino Oscillation Search (MINOS) experiment has continued to collect
atmospheric neutrino events while doing a precision measurement of NuMI beamνµ disappearance os-
cillations. The 5.4 kton iron calorimeter is magnetized to provide the unique capability of discriminating
betweenνµ andν̄µ interactions on an event-by-event basis and has been collecting atmospheric neutrino
data since July 2003. An analysis of the neutrino events with interaction vertices contained inside the
detector will be presented.

Introduction

The MINOS experiment uses two similar
iron/scintillator calorimeters to measure the
properties of the NuMI neutrino beam over a
long baseline, and has precisely measured the
neutrino flavor oscillations [1] previously seen
in atmospheric neutrinos [2]. The 5400 ton Far
Detector is located 700 m (2070 mwe) deep in
the Soudan Mine Underground Lab in northern
Minnesota [3]. The rock overburden reduces the
rate of cosmic ray muons reaching the Lab by
a factor of105, allowing the detection of atmo-
spheric ν via their charged-current production
of leptons. These interactions can occur in the
detector itself (“contained vertex interactions”)
or in the rock surrounding it (“upward-going
muons”). This paper expands on the previously
published MINOS contained vertex analysis [4]
by a factor of two more data (12.23 ktyr), adds a
search for showers fromνe and NC interactions,
and uses a Bayesian, bin-free fit for the oscillation
parameters. The MINOS detector is unique among
experiments sensitive to atmospheric neutrinos, as
it is magnetized with a toroidal field of∼ 1.5T,
allowing the determination of momentum and
charge on an event-by-event basis via the curvature
of the muon track. Muon momentum provides
information on the energy of the parent neutrino,
and muon charge tags the parent neutrino as aνµ

or ν̄µ. Shower-like events come from bothνe and
neutral current interactions. Sinceνµ disappear
into ντ while νe do not participate in the observed
atmospheric oscillations [5], showers represent a
normalization of the absolute flux to calibrate the
degree ofνµ disappearance.

The Data and Analysis

To separate the neutrino-induced interactions (once
or twice a week) from the much larger rate (∼
2Hz) of cosmic ray muons which penetrate the
overburden, a series of topological and timing cuts
is applied to the data. “Track-like” muon events
can pass this selection either by being upward-
going or by the highest end of the track be-
ing contained in the MINOS Far Detector’s fidu-
cial volume. Upward-going events are neutrino-
induced as the Earth screens out charged parti-
cles, and events originating inside the detector
are likewise attributed to neutrinos since charged
particles would be observed entering the detec-
tor. The selected events fall into one of four
classes: Fully-Contained (FC), which both start
and stop inside the detector; Partially-Contained
Downward-Going (PCDN) originating in the de-
tector but escaping through the bottom; the con-
verse Partially-Contained Upward-Going (PCUP);
and Upward Muons (UPMU) originating in the
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rock and entering the detector from below. The lat-
ter are analyzed separately [6] and discussed in de-
tail elsewhere in this session [7]. Shower-like elec-
tron events are also selected by a separate analysis
chain, and are normalized to the track-like events
resulting from that same alternate analysis chain.
Events in time with the NuMI beam are flagged by
a very efficient (99%) GPS timestamp and removed
from this analysis of atmospheric neutrinos.

Initial data and track quality selection cuts are ap-
plied to the track-like events and the data is kept
based on either timing or topological information.
Timing uncertainty for each flash of scintillation
light is σt = 2.4 ns [6], sufficient to establish the
direction of travel for a muon given a physical fit
for the track. Stringent track quality cuts eliminate
poorly fit tracks masquerading as neutrino interac-
tions, leaving only upward-going events.

Tracks whose highest part is contained inside the
fiducial volume are also neutrino-induced. The
fiducial volume is a 7.6 m octagonal region within
the 8.0 m octagonal steel detector, with a 0.4 m ra-
dius cylinder around the central magnetic coil re-
moved, and without the four steel planes at each
end of the two detector modules. The planar struc-
ture of the detector allows cosmic muons to enter
the detector between the planes and appear con-
tained. These events tend to travel nearly parallel
to the planes or to contain large energy deposits
around the track vertex. A series of track topology
cuts are applied to separate the signal and back-
ground. To eliminate cosmic rays sneaking along
gaps in the detector, the axial component of the
projection of the track back to the edge of the de-
tector must pass through 0.15 m of detector, and
there must be no detector activity before the high-
est end of the track. An additional scintillator layer
placed on the top and sides of the MINOS Far De-
tector serves as a veto shield and aids in the rejec-
tion of entering cosmic rays. This97% efficient
shield is especially important in the selection of
shower-like events for theνe analysis, where lack
of a track prevents the precise examination of pos-
sible cosmic ray muon entry paths. Requiring a
quiet veto shield eliminates 2% of the real neutrino
events via accidental coincidence. In total, 277
track-like neutrino events were seen, compared to
a no-oscillation expectation of354± 47.

A sub-sample of events is defined which have espe-
cially well-determined tracks: those at least 1.0 m
long; crossing at least 10 planes; and those for
which both up/down timing fits differ by more than
0.1 m. These “high resolution” tracks offer the best
window into the parent neutrino baseline and en-
ergy, the importantL/E parameter that drives neu-
trino flavor oscillations. Additionally, the curva-
ture of the track in the detector’s magnetic field
allows the separation ofµ− from µ+, which are
produced byνµ and ν̄µ respectively. These data
are summarized in Table 1.

The dataset analyzed for shower-like events was a
4.51 ktyr subset of that used in the track-like anal-
ysis. This analysis independently selected nearly
the same track-like events as the first analysis.
The comparison of the showers caused byνe and
NC interactions (insensitive to oscillations) and
the tracks caused by theνµ involved in oscilla-
tions is useful. 89 showers and 112 tracks were
found, compared to expectations of88.8± 0.9 and
149.8±0.9. Complete details of this process can be
found in [8], and a spectrum of these events com-
pared to expectations is shown in Fig. 1. To test
the effect of oscillations, a double ratio of track
to showers in data and unoscillated Monte Carlo
is formed:R = (#tracks/#showers)(Data/MC)

. In the absence of oscillations, this ratio would
be unity. Given the observed numbers,R =
0.75+0.12

−0.10(stat)± 0.04(syst) rules out no oscilla-
tions at the 98.0% level. Another way to suppress
the number of tracks (but not showers) is if the ab-
solute flux normalization changes. A second result
of the track to shower ratio is the best fit flux nor-
malization. Using the flux model of Barr [9, 10]
(which has a 20% quoted uncertainty [11]) this
analysis finds the best fit neutrino flux to be a fac-
tor of Satm = 1.07 ± 0.12stat ± 0.09syst times
the expected flux, a measurement consistent with
theory.

Upward going neutrinos have traveled further than
downward going ones, giving them more of a
chance to disappear. A similar double ratio can be
formed from the high-resolution track-like data in
Table 1,R = (#UP/#DOWN)(Data/MC). In
the absence of oscillations, this ratio would be also
be unity. The data showR = 0.72+0.13

−0.11(stat) ±
0.04(syst), a significant deficit. TheL/E for these
events is plotted directly in Fig. 2.
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Classification Data Monte Carlo Expectation (no oscillations)
Cosmicµ+/µ− νµ/ν̄µ CC νe/ν̄e CC/NC Upwardµ+/µ− Neutrons

UPνµ 52 - 69.9± 10.5 0.4± 0.1 1.2± 0.2 -
UP ν̄µ 22 - 35.7± 5.4 0.7± 0.1 0.7± 0.2 -
UP ? 3 - 9.0± 1.4 0.3± 0.0 0.3± 0.0 -
DOWN νµ 60 3.3± 0.7 64.7± 9.7 0.3± 0.0 0.1± 0.0 -
DOWN ν̄µ 33 3.7± 0.7 32.8± 4.9 0.6± 0.1 0.05± 0.0 -
DOWN ? 12 0.1± 0.1 10.2± 1.5 0.3± 0.0 0.05± 0.0 -
UNCERTAIN 95 4.2± 0.7 92.2± 13.8 23.6± 3.5 0.4± 0.1 0.3± 0.2

Table 1: A summary of the track-like atmospheric neutrino data. The “high resolution” track data is listed
as up-going or down-going, and broken into charge identifiedsub-samples for events with clear curvature.
Uncertain events are those which are not high-resolution. The data errors are statistical, the Monte Carlo
from normalization uncertainties.
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Figure 1: The spectrum of observed shower-like
interactions compared to Monte Carlo expecta-
tions. Showers are primarily due toνe CC and any
NC interactions, which are not sensitive to theνµ

oscillations seen in the atmospheric sector.

A Bayesian approach is used to estimate the os-
cillation parameters which best describe the data.
In this method, Monte Carlo data is used to find
distributions of possible parent neutrinos for each
observed event in the high resolution sample of at-
mospheric neutrinos. These distributions are then
used to form a Probability Density Function (PDF)
in L/E, representing the probability that the par-
ent neutrino came from a givenL/E (see [12] for
complete details of this procedure). The product
of the PDFs for all the data are compared to that
of the MC using a log-likelihood calculation, and
the resulting allowed region in oscillation param-
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Figure 2: The high resolution data sample (dots
with statistical error bars) plotted as a function of
log10(L/E). The Monte Carlo expectations (solid
line) show agreement at lowL/E and disagree-
ment at higher values. If the oscillation parameters
∆m2 = 0.00274, sin2 2θ = 1.0 are applied to the
MC, the dashed line results and describes the data
well.

eter space is is consistent with both previous at-
mospheric [2, 4] and beam [1] neutrino results, al-
though with smaller statistics and correspondingly
less certainty.

Lastly, MINOS’ unique feature of a neutrino ex-
periment with magnetic field can be used to see
if νµ oscillate differently than̄νµ. No such un-
expected effect is seen when fitting the two sam-
ples separately. This is most concisely expressed
as another double ratio of data to MC,R =
(νµ/ν̄µ)(Data/MC). In the presence of different os-
cillation parameters for the two sorts of neutrinos,
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this ratio would diverge from unity. The observed
R = 0.93+0.19

−0.15(stat)±0.12(syst), shows no such
deviation.

Conclusions

An atmospheric neutrino sample of 12.23 ktyr of
tracks and 4.51 ktyr of showers seen in the MINOS
Far Detector has been analyzed. Double-ratios of
showers to tracks, up-going to down-going events,
andνµ to ν̄µ have been measured. These data are
consistent with theνµ ↔ ντ disappearance oscil-
lations seen in detail in the NuMI beam [1] and
with no difference in the oscillation properties of
neutrinos and anti-neutrinos. A Bayesian analysis
of the L/E from νµ induced tracks produces an
allowed region in∆m2, sin2 2θ space consistent
with other measurements of this oscillation phe-
nomenon. This work also produces a measurement
of the absolute normalization of the neutrino flux
of Satm = 1.07 ± 0.12stat ± 0.09syst times that
predicted by Barr [9]. The MINOS detector contin-
ues to accumulate atmospheric neutrino data, with
a livetime fraction of> 98%. Future analysis will
include the tracks, showers, and upmus in a unified
analysis, further refining the above results.
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