Identification of neutrino flavor in the ANITA experiment

B.C. Mercurio, for the ANITA collaboration

introduction

If a charged lepton experiences a hard energy loss in a dense transparent medium such as ice, the particle shower resulting from the energy transfer produces a coherent radio Cherenkov pulse. For shower energies greater than $\sim 10^{19}$ eV, the radio pulse can be detected by ANITA. Because the cross sections of bremsstrahlung, pair production, and photonuclear interactions depend on the flavor and energy of a charged lepton, the distribution of the showers can indicate the flavor and energy of the neutrino. A Monte Carlo simulation has been developed with a focus on multiple bang events, which are neutrinos that produce more than one detectable radio pulse.

example of shower distributions for the 1st km in ice

<table>
<thead>
<tr>
<th>Flavor</th>
<th>Energy (eV)</th>
<th>Pulses</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν_e</td>
<td>10^{19}</td>
<td>3</td>
</tr>
<tr>
<td>ν_x</td>
<td>10^{20}</td>
<td>2</td>
</tr>
<tr>
<td>μ^\pm</td>
<td>10^{20}</td>
<td>1</td>
</tr>
<tr>
<td>τ^\pm</td>
<td>10^{20}</td>
<td>1</td>
</tr>
</tbody>
</table>

simulated wave forms for a triple bang event

- 3 radio pulses
- detector triggered twice
- wave forms shown for the 6 antennas that are hit most directly by the pulses

average time between pulses

- ice shelves used as the target
- 10^{20} eV
- time between pulses can be > 3000 ns
- similar distribution at other energies
- large number of events required to determine the flavor ratio

pulses per event

- ice shelves used as the target
- 1:1:1 flavor ratio
- on average, more pulses per event at higher neutrino energy
- large number of events required to determine the spectrum based only on the number of pulses per event