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Abstract: The origin of ultra-high energy (UHE) cosmic rays is still anopen question. In the present
work, we searched the possible UHE cosmic ray sources using the MAGIC telescope for the associated
very high energy (VHE) gamma ray emission. Due to constrained propagation distance of such cosmic
rays, we selected nearby galaxies in vicinity of the direction of the AGASA triplet and a HiRes UHE
cosmic ray event: NGC3610 and NGC3613 (quasar remnants); Arp299 (a system of colliding galaxies).
No significant excess in the VHE region was found found from these objects or their surrounding region.
At multi-100 GeV regime, the upper limits on fluxes were givenagainst gamma ray sources in surrounding
region. The presented limits constrain the flux of a new hypothetical source in the region, provided the
cosmic rays are emitted from a single point-like origin.

Introduction

Cosmic rays up to an∼ 3 × 1020 eV energy have
been observed so far, while their origin remains
unidentified. In the standard particle acceleration
models, possible candidates are only a few types of
the most powerful or very large-scale objects. Due
to the lack of data on Galactic and extragalactic
magnetic fields, it is difficult to trace back to their
sources. However, the AGASA group claimed that
a part of UHE cosmic ray events cluster in their
arrival direction distribution ([1] and references
therein). Several groups have also pointed out a
notable angular correlation with particular class of
objects such as BL Lacertae objects, which include
known VHE gamma ray emitters [2]. A similar
correlation was reported on quasar remnants [3].
By the quasar remnant scenario [4], the rotational
energy of the black hole is dominantly radiated in
MeV–TeV band whose luminosity can be a few
orders higher than that of cosmic rays. If quasar
remnants within several tens of Mpc are the ori-
gin of all observed cosmic rays above1020 eV,
they would overshine more than any known TeV
gamma ray source. But in the case that hundreds
of such sources distribute over several 100 Mpc
space, the cosmic ray flux, at least around sev-

eral1019 eV, is consistent with flux limits by VHE
gamma ray observations.

Observation

To find an evidence or hint of the UHE cosmic
ray source, especially of the clustering events, we
searched possible sources for VHE gamma rays
with MAGIC (Major Atmospheric Gamma ray
Imaging Cherenkov) Telescope [5]. The detec-
tor consists of the world’s largest 17-m-diameter
reflector viewed by photo-multiplier tube camera
with 3.5◦ field of view (FOV). It is located at the
Observatorio del Roque de los Muchachos (2200
m above sea level), La Palma, Canary Islands.

Table 1 summarises the UHE cosmic ray clus-
ter (AGSAA triplet) in the Plough, Ursa Major
where with AGASA data alone three events above
4 × 1019 eV had been observed in a 2.5◦ radius.
Recently, the HiRes group detected a3.7 × 1019

eV near the triplet and estimated the chance prob-
ability of observing such ‘quartet’ to be 0.6% [6].
This direction coincides in the supergalactic plane.

Along the direction of interest, we selected nearby
objects that are capable sources of UHE cosmic ray
observed on the Earth. To carry out delegated ob-
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Dataset E
(CR)
0 R.A. Decl. δθ

AGASA 77.6 11h14m +57.6◦ 1.0◦

AGASA 55.0 11h29m +57.1◦ 1.7◦

AGASA 53.5 11h13m +56.0◦ 1.9◦

HiRes 37.6 11h16m +55.85◦ 0.4◦

Table 1: UHE events in the cluster.E0 is the
estimated energy by each experiment in1018 eV
(EeV).δθ is a nominal direction error at a 68%CL.

Object R.A. Decl. mV D

NGC3610 11h18m4 +58◦47’0 8.5 31
NGC3613 11h18m6 +58◦00’6 8.9 34
Arp299 11h28m5 +58◦33’9 11.8 37

Table 2: Locations of the observed objects in the
present work.mV is visible magnitude.D is dis-
tance in Mpc (H0 ∼ 70 [km h−1 Mpc−1]).

servations, we picked out the following three ob-
jects as summarised in Table 2.

NGC3610 is a merger remnant elliptical galaxy
with a black hole of∼ 0.5×108 solar massesM⊙.
The maximum accessible cosmic ray energy is es-
timated to be4.4 × 1019 eV. This galaxy has at-
tracted attentions because of its fine structure and
prominently warped disk, implying that a dynami-
cal event occurred in a few109 years ago [7].

NGC3613 is a quasar remnant with a black hole of
1.6 × 108M⊙. The maximum cosmic ray energy
is estimated to be5.9 × 1019 eV. This galaxy is
located 0.7◦ off the most energetic triplet event.

Arp299 (Mrk 171, VV118; [8] and references
therein) is a starburst galaxy and a system of col-
liding galaxies (NGC3690+IC694). It is charac-
terised by an extreme star formation rate. The su-
pernova rate is also as high as∼ 0.5 per year.
Arp299 is pointed out to be a potential source to
explain the AGASA triplet [9].

Operating the MAGIC telescope, we observed
NGC3610 for 5.1 hours, NGC3613 for 5.0 hours
each in December 2006 and Arp299 for 9.9 hours
in January 2007. All the observations were carried
out by the so-called wobble mode [10] in which the
object position was tracked alternatively 0.4◦ east
or west off the centre of FOV.

Analysis and result

The data analysis was performed by our standard
analysis chain MARS (MAGIC Analysis and Re-
construction Software) [11]. The image of ob-
served showers was parameterised by the conven-
tional Hillas technique [12]. To interpret data, a
number of simulated air showers were generated
under actual telescope configurations [13]. For re-
jection of the background hadronic shower events,
we used the random forest (RF) method [14]. To
define the parameter ‘hadronness’H that repre-
sents how hadron-like showers look (=0 for gamma
ray- and =1 for hadron- like), the RF algorithm is
trained with data and simulated gamma ray shower
samples for compatible zenith angles(29◦ − 45◦).
The energy of primary gamma rays was estimated
similarly by the RF with simulated gamma ray
showers. The energy resolution is< 25% at ener-
gies of interest. The incoming direction of showers
was reconstructed by the so-called DISP method
[15]. The typical angular resolution is∼ 0.1◦.

First we search for the VHE gamma ray emission
directly from the observed object. To select gamma
ray like showers, the criterion ofH cut was opti-
mised by simulated gamma ray showers by max-
imizing their significance against surviving back-
ground events.θ2 distribution is compared with
that of OFF-sources (expected background distri-
bution) whereθ is the angular distance between
reconstructed shower incoming direction and the
object position. The cut forθ2, typically ∼ 0.02
[degree2], was similarly optimised by simulated
showers and was applied on the data.

Figure 1 shows an example ofθ2 distribution on
Arp299 (Eest ≥ 200 [GeV]) in which no signifi-
cant excess was found for gamma ray signals.

Also for other objects, no significant excesses was
found. Therefore the upper limits of gamma ray
fluxes were estimated for these cases. In four es-
timated energy bins, the acceptance of gamma ray
showers after cuts were evaluated by the simulated
samples independent of ones used in the RF.

The limits on the fluxes at a 95% confidence level
(CL) are summarised in Table 3. The integral flux
limits above≥ 200 GeV correspond to∼ 7% for
NGC 3610 and NGC 3613 and5% for Arp 299 to
the Crab flux observed by MAGIC [16].
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Figure 1: An example ofθ2 distribution (Arp299;
Eest ≥ 200[GeV]) . Closed circles: ON-source
Histogram: OFF-source data, respectively. The
vertical line: optimised cut ofθ2 for this case

〈E0〉 UL [10−14 cm−2 s−1 GeV−1]
[GeV] NGC3610 NGC3613 Arp299
216 18. 16. 12.
463 2.5 2.3 1.7
921 0.61 0.60 0.43
1266 0.32 0.30 0.24

Table 3: Upper limits on gamma ray fluxes from
observed objects at a 95% CL.

To search for any emission apart from the thse ob-
jects, the significance of the excess events by Equa-
tion (17) in [17] was estimated for each sky point
using the cumulative dataset. The background dis-
tribution was modelled by the data observed on the
non-source region at similar zenith angles.

Figure 2 shows the significance map forEest ≥
300 GeV with a convolution of the angular reso-
lution. Crosses denote positions of objects. Stars
represent two AGASA events. The solid curve is
a 1◦ circle centred on the cicumcentre of three ob-
jects to accomodate to a moderately flat sensitiv-
ity. Figure 3 shows the significance distribution for
0.1◦×0.1◦ bins within this circle. The distribution
is compatible with non-source hypothesis.

Concluding remarks

Following up with AGASA-HiRes quartet detec-
tion, we searched the possible UHE cosmic ray
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Figure 2: Significance map(Eest ≥ 300[GeV]) of
the observed region smoothed by the angular res-
olution. ∼ 0.1◦. Crosses: positions of objects.
Stars: AGASA events. The solid curve:1◦ circle
from the cicumcentre of observed objects.
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Figure 3: The significance distribution within solid
curves (1◦ radius) in the map of Figure 2.

sources, nearby quasar remnants NGC3610 and
NGC3613 and a starburst galaxy Arp299, for VHE
emission. In∼ 200− 500 GeV energies, the upper
limits on the gamma ray flux from each source is
placed against each object and were∼ 8%− 12%
Crab flux at a 95% CL.

Over the region observed, there are no positive sig-
nals for the VHE emission by effectively∼ 15
hour observation. Assuming the triplet is a UHE
cosmic ray signal from a single source, its energy
flux yields∼ 2 eV cm−2 s−1 by the AGASA ob-
servation. If any of the observed objects is a re-
sponsible cosmic ray source, the present limits cor-
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respond to∼ 3−5 times of the energy flux of UHE
cosmic ray component.

In near future, if nearby sources exist, UHE cosmic
ray clusters will be found even clearly by higher
quality data provided by> 1000-km2-scale ob-
servatories. With progress of imaging Cherenkov
telescopes as well, it is highly expected to identify
the sources by both ways of cosmic rays physics
and gamma ray astronomy to approach the the
mystery of UHE cosmic ray origin.
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