30th International Cosmic Ray Conference - Merida, Mexico, 3 - 11 July 2007

Preliminary measurements of carbon and oxygen energy spectra from the second flight of CREAM

Riccardo Zei (University of Siena & INFN)

for the CREAM Collaboration

H.S. Ahn¹, O. Ganel¹, J.H. Han¹, K.C. Kim¹, M.H. Lee¹, A. Malinin¹, E.S. Seo^{1,2}, R. Sina¹, P. Walpole¹, J. Wu¹, Y.S.Yoon^{1,2}, S.Y. Zinn¹

¹Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA ²Department of Physics, University of Maryland, College Park, MD 20742, USA

> N.B. Conklin, S. Coutu, S.I. Mognet Department of Physics, Penn State University, University Park, PA 16802, USA

P.S. Allison, J.J. Beatty, T.J. Brandt Department of Physics, Ohio State University, Columbus, OH 43210, USA

J.T. Childers, M.A. Duvernois

School of Physics and astronomy, University of Minnesota, Minneapolis, MN 55455, USA

M.G. Bagliesi, G. Bigongiari, P. Maestro, P.S. Marrocchesi, R. Zei Department of Physics, University of Siena & INFN, Via Roma 56, 53100 Siena, Italy

J.A. Jeon, S. Nam, I.H. Park, N.H. Park, J. Yang

Department of Physics, Ewha Womans University, Seoul 120-750, Republic of Korea

S. Minnick

Department of Physics, Kent State University, Tuscarawas, New Philadelphia, OH 44663, USA

S. Nutter

Department of Physics, Northern Kentucky University, Highland Height, KY 41099, USA

L. Barbier Astroparticle Physics Labroratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA

CREAM-II C & O Spectra

Riccardo Zei ICRC 2007 (Merida - Messico) OG 1.1 Slide 2

CREAM flights

Altitude 38–40 km. Average atmospheric overburden ~ 3.9 g/cm²

Instrument configuration (2nd flight)

Timing Charge Detector (TCD)

- scintillator paddles (2 charge measurements)
- backscatter rejection by fast pulse shaping

<u>Cherenkov Detector</u> (CD)

- acrylic radiator (charge measurement)
- $\boldsymbol{\cdot}$ vetoes low energy particles

Silicon Charge Detector (SCD)

- 2 layers of Si pixels (2 charge measurements)
- backscatter rejection by fine segmentation

Target (T1,T2)

- + 19 cm densified Graphite (~ 0.5 λ_{int} , ~ 1 $X_0)$
- induces a hadronic interaction

Tungsten Sci-Fi Calorimeter (CAL)

• 20 X₀; 1 cm granularity (energy measurement)

CREAM-II C & O Spectra

Riccardo Zei

Silicon Charge Detector (SCD)

- 380 µm thick Si sensor
- 16 pixels per sensor
- pixel size ~ 2.1 cm²
- 2496 channels/layer were readout
- No dead area between sensors
- Active area per layer ~ 0.52 $\rm m^2$
- particle-ID by charge measurement from Z=1 to Z=33

CREAM-II C & O Spectra

Riccardo Zei

Tungsten Sci-Fi Calorimeter

- Active area 50x50 cm²
- Longitudinal sampling: 3.5 mm W (1 X₀) + 0.5 mm Sci-Fi
- Transverse granularity: 1 cm (20 fibers ~ 1 Moliere radius)
- Total of 20 layers (20 X_0 , ~ 0.7 λ_{int}): alternate X-Y views
- 2560 channels (3 gain ranges) readout by 40 HPDs

Riccardo Zei

Geometric Factor

Monte Carlo Generation: FLUKA 2005.6 with hadronic interaction package DMPJET-3

Carbon (Oxygen) nuclei isotropic generation according to power-law spectrum in the energy range 600 (800) GeV - 100 TeV

Geometrical Acceptance is calculated selecting events crossing both SCD Top Plane and CAL Top Layer

> Selected fiducial region: SCD top plane side = 78 cm CAL top plane side = 50 cm

 $G_{\rm F} \sim 0.46 \ {\rm m}^2 \ {\rm sr}$

Shower reconstruction & Charge-ID

22 24 26

28 30 col#

- Shower imaging (lateral/longitudinal) with CAL
- Fit of the shower axis
- Back-projection of CAL track to SCD

 The track is matched with the SCD pixel hit by the incoming particle

Rejection of backscattered particles

• Charge identification of the incoming particle (a consistent charge assignement from the 2 layers is required)

Observed charge distribution in SCD

Riccardo Zei

Charge Reconstruction Efficiency (Monte Carlo)

• Charge Reconstruction Efficiency is normalized to the number of triggered events

• MC algorithm for charge identification with SCD is the same as applied on flight data

 Preliminary MC estimate of charge reconstruction efficiency is ~ 70% (above 2 TeV) including effects of SCD masked sensors

Flight DATA: carbon and oxygen energy deposit in CAL

All reconstructed showers inside selected fiducial region	39390	
After Consistency cut for SCD signals	10890	
Nuclei Charge Selection	728 (Oxygen)	583 (Carbon)

$\begin{array}{c} \mbox{Energy Deconvolution} \\ \mbox{Primary energy} \\ \mbox{$\varphi(E_d)=\int A(E_d,E)\Phi(E)dE$} \\ \mbox{Deposited energy} \\ \end{array}$

For events surviving the selection cuts, both distributions of energy deposit and primary particle energy are divided into equidistant logarithmic bins.

Through their correlation plot, we can estimate the matrix elements Aij i.e. the probability that events in the deposited energy bin i come from the primary incident energy bin j.

 $A(E_d,E)$ is determined from Monte Carlo events

Riccardo Zei

Correction to TOI (Top of Instrument): Interaction fractions

Correction to TOA (Top of Atmosphere)

Through MC simulation the correction factor η is calculated for an (average) residual atmosphere overburden of ~ 3.9 g/cm².

Carbon = 0.86 Oxygen = 0.83

Absolute Flux

The unfolded counts N^{inc} , in each incident energy bin of size ΔE , are normalized to obtain the <u>absolute</u> differential fluxes at the top of atmosphere, given by

$$\Phi(E) = \frac{N^{inc}}{\Delta E} \times \frac{1}{G_F \cdot T_l \cdot \varepsilon \cdot \eta}$$

where

- $G_{\rm F}$ = Geometric factor
- T_{I} = Live-time
- ε = product of efficiencies , correction for interaction fractions
- η = TOA correction

Preliminary Carbon & Oxygen energy spectra

CREAM-II C & O Spectra

Riccardo Zei

Conclusions

Riccardo Zei

• A preliminary analysis of the data indicates an excellent charge-ID from SCD and good performance of the imaging calorimeter and of the whole instrument

- Preliminary carbon and oxygen energy spectra are found to be consistent with previous measurements
- Analysis is on-going ... more to come!

Thanks to:

- NASA
- NSBF/CSBF
- INFN/PNRA
- WFF
- NSF

CREAM-II C & O Spectra