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Abstract: Observations by the H.E.S.S. system of imaging atmosphericCherenkov telescopes provide
the most sensitive measurements of the Galactic Centre region in the energy range 150 GeV - 30 TeV. The
vicinity of the kinetic centre of our galaxy harbours numerous objects which could potentially accelerate
particles to very high energies (VHE,> 100 GeV) and thus produce theγ-ray flux observed. Within
statistical and systematic errors, the centroid of the point-like emission measured by H.E.S.S. was found
[1] to be in good agreement with the position of the supermassive black hole Sgr A* and the recently
discovered PWN candidate G359.95-0.04 [2]. Given a systematic pointing error of about 30”, a possible
association with the SNR Sgr A East could not be ruled out withthe 2004 H.E.S.S. data. In this contri-
bution an update is given on the position of the H.E.S.S. Galactic Centre source using 2005/2006 data.
The systematic pointing error is reduced to 6” per axis usingguiding telescopes for pointing corrections,
making it possible to exclude with high significance Sgr A East as the source of the VHEγ-rays.

Introduction

The centre of the Milky-Way is the most violent
and active region in our galaxy. Dust along the
line of sight prevents observations of the Galac-
tic Centre (GC) by optical telescopes, but pre-
cise data from this region have been obtained at
radio, infrared, X-ray, and hard X-ray/softγ-ray
(< 200 keV) energies. These data have established
the existence of a2.6 × 10

6 M⊙ black hole at the
kinematic centre of our galaxy, commonly identi-
fied with the bright compact radio source Sgr A∗,
surrounded by a massive star cluster, a bright su-
pernova remnant shell, and giant molecular clouds
(see, e.g., [3, 4] for recent reviews).

VHE γ-ray emission from the direction of the
Galactic Centre was reported by several ground-
basedγ-ray observatories [5, 6, 7, 8]. A recent
deep exposure by H.E.S.S. [9] revealed the ex-
istence of two discrete VHEγ-ray sources, on
top of diffuse emission along the inner 300 pc of
the Galactic Centre ridge. One of the sources,
HESS J1747-281 [10], is identified with the pulsar
wind nebula (PWN) associated with the supernova
remnant (SNR) G0.9+0.1. However, no unique
identification is possible for HESS J1745-290, the

position of which is within errors coincident with
the kinematic centre of our galaxy.

A firm identification of HESS J1745-290 is diffi-
cult because the GC region is densely packed with
sources of non-thermal radiation – possibly emit-
ting at VHE energies. In direct vicinity of the
H.E.S.S. source, at least three different objects are
discussed as possible counterparts of HESS J1745-
290. First, various models predict VHEγ-ray pro-
duction near the super-massive black hole itself
(see, e.g., [11]). Sgr A∗ is partially surrounded
by the bright, shell-like radio emission of the SNR
Sgr A East [12], which is the second favoured can-
didate counterpart of the VHEγ-ray emission. Fi-
nally, in a deep Chandra survey, G359.95-0.04, a
candidate pulsar wind nebula, was recently discov-
ered [2] only8.7′′ away from Sgr A∗. Despite its
faint X-ray flux, models [13] predict a TeVγ-ray
flux that is compatible with H.E.S.S. observations.

A precise localisation of HESS J1745-290 is es-
sential for shedding light onto this source confu-
sion. In this paper preliminary results concerning a
refined position measurement of HESS J1745-290
are reported using an improved telescope pointing
strategy, for which the systematic error on the ob-
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servation position is reduced by a factor of three
compared to previous results.

H.E.S.S. observations of the Galactic
Centre region

The most precise published results on the position
of HESS J1745-290 are based on a 50 h expo-
sure carried out with the H.E.S.S. array in 2004.
Within a statistical error of 14” the best-fit position
of HESS J1745-290 was found [1] to coincide with
the position of Sgr A∗. The systematic pointing er-
ror of the H.E.S.S. telescope system for this data
set is about 28”, already the most precise pointing
in the field of ground-basedγ-ray astronomy.

The results reported here are based on data
recorded between May 14th and July 27th, 2005,
and between April 4th and September 24th, 2006.
The total good-quality exposure of the dataset is
73.2 h (live time). Most of the data (66.1 h) were
taken in “wobble mode” around Sgr A∗, i.e. the
observation direction was offset from the source
direction by typically0.5◦ − 0.7◦ in either right
ascension or declination. The remaining data were
taken at various offsets, within1.4◦ from Sgr A∗.
The zenith angle distribution ranges from6◦−60

◦,
and the mean zenith angle of observation is21.6◦.

Data were analysed with the standard H.E.S.S.
calibration and reconstruction chain [14].Hard
cuts [15] were used forγ-ray selection, resulting
in a sample of well-reconstructed showers with
an average angular resolution of0.07

◦ (68% con-
tainment radius). The data show a strong excess
of γ-rays from the direction of the GC source
HESS J1745-290, accompanied by diffuseγ-ray
emission along the Galactic Plane. An excess of
1300γ events is found within0.1◦ from the GC,
corresponding to a statistical significance of 44.3
standard deviations above background. The inte-
gral γ-ray flux above 1 TeV is in agreement with
published results based on 2004 data [1].

Precision pointing

For an exact localisation of the centroid of the VHE
γ-ray emission, precise knowledge of the telescope
pointing direction is mandatory. The pointing de-

viation of individual telescopes is typically of the
order of 2-3’. Various causes have been identified,
with the most important ones being small misalign-
ments of azimuth and altitude axes during con-
struction, sagging of telescope foundations over
time, (mostly) elastic deformations of the masts
connecting the camera body to the mirror dish,
gravitational bending of the mirror dish, and in-
elastic deformations of the whole structure leading
to hysteresis effects. The amount these effects con-
tribute to the mispointing strongly depends on the
observation direction. It should however be noted
that - due to the rigidity of the steel construction -
the overall pointing deviation is very small given
the size and weight of the H.E.S.S. telescopes.
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Figure 1: Position of the centroid of VHEγ-ray
emission from PKS 2155-304 relative to its nomi-
nal position. Data were taken in 2006 during an ex-
ceptional VHEγ-ray flare of this source [16]. The
γ-ray excess was fit by a two-dimensional multi-
gaussian profile representing the point spread func-
tion of the H.E.S.S. instrument. The red data point
shows the position derived from the full data set.
When subdividing the data into the four wobble
offsets, the positions shown by the black symbols
are obtained. Note that for most of the RA+ wob-
ble data, no bright stars were found in the field of
view of the guiding telescopes, reducing the avail-
able live time for this analysis.

Most pointing deviations can be corrected for by
taking calibration data at regular intervals. Each
telescope is pointed at typically 50 bright stars uni-
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formly distributed in the sky. The star is imaged
by the telescope mirror onto a screen in front of
the Cherenkov camera, and an image of the spot
is recorded by a central CCD camera mounted at
the centre of the mirror dish. The position of each
spot is then compared to the nominal centre of the
Cherenkov camera as determined from eight posi-
tioning LEDs mounted on the camera body. The
data are fit with a 17 parameter model which ac-
counts for elastic deformations of the telescope
structure. In the analysis ofγ-ray data, this model
is then used to correct the position of the shower
images in the focal plane of the Cherenkov cam-
eras. The precision achieved on the observation di-
rection of the H.E.S.S. array is about 20” per axis
[17].

For the 2005-2006 data set presented here, the sys-
tematic error is reduced further using guiding cam-
eras mounted at each telescope. Duringγ-ray ob-
servations, stars in the field of view (0.3◦ × 0.5◦)
of these cameras are recorded at a typical rate of
1 min−1, and their reconstructed positions matched
to the Hipparcos and Tycho star catalogues. From
this information position-dependent corrections in
right ascension and declination are calculated for
the individual H.E.S.S. telescopes. Additionally,
the position of the Cherenkov camera is monitored
by the central CCD camera. With this method, the
systematic error on the telescope orientation is re-
duced to 6” per axis for observations with the full
H.E.S.S. array ([18], details will be published else-
where).

The procedure was extensively tested on VHEγ-
ray point sources of known position. Fig. 1 shows
a representative study on the position of the high-
frequency peaked BL Lac PKS 2155-304. Excel-
lent agreement with the nominal position of the
source is found even when splitting the data into
different wobble offsets.

Position of HESS J1745-290

The position of HESS J1745-290 is determined by
fitting, in a window of±0.2◦ around the maximum
excess, the acceptance corrected and background
subtractedγ-ray count map. Diffuseγ-ray emis-
sion is subtracted prior to the fit using the model
presented in [9]. The width of the 2-dimensional

gaussian fit to these data is composed of a fixed
term describing the mean angular resolution of the
data set, and a parameter left free to fit the intrinsic
size of the source. The count map is divided into
sky bins of0.04

◦
× 0.04

◦, and the fit function is
integrated over the bin area for best accuracy.χ2-
minimisation is used to obtain the best-fit position.
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Figure 2: Smoothed 90 cm VLA radio image (re-
produced from [19]) of the SNR Sgr A East in
Galactic coordinates. The position of Sgr A∗ and
G359.95-0.04 are marked with a cross and a star,
respectively. The blue triangle and circle mark the
best fit position and total error (68% CL) from the
2004 data set [1]. The best fit result of this analy-
sis is shown by the red triangle and red circle. The
red square marks the expected position of the cen-
troid of the VHEγ-ray emission if it followed the
observed radio flux of Sgr A East.

The best-fit position of HESS J1745-290 in Galac-
tic coordinates isl = 359

◦
56

′
41.1′′ ± 6.4′′ (stat.),

b = −0
◦
2
′
39.2′′ ± 5.9′′ (stat.). These results

are preliminary and subject to final checks. Fig.
2 shows the new H.E.S.S. position measurement
on top of a 90 cm VLA radio image of the in-
ner 10 pc region of the GC. The shell-like struc-
ture of the SNR Sgr A East is clearly visible. The
position of HESS J1745-290 is coincident within
7.3′′ ± 8.7′′ (stat.) ±8.5′′ (syst.) with the radio
position of Sgr A∗ [20], and is also consistent with
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the position reported from the 2004 data set [1].
While the latter was marginally consistent with the
radio emission from Sgr A East, the result obtained
in this analysis does rule out Sgr A East as the
counterpart of HESS J1745-290 with high signif-
icance. Due to the improved pointing accuracy of
the H.E.S.S. array, the probability that the observed
γ-ray flux is produced near the radio maximum
of Sgr A East is about10

−11. Assuming that the
VHE γ-ray flux follows the radio morphology of
Sgr A East (corresponding to the red square in Fig.
2), the chance probability of finding the centroid of
the emission at the reported position is10

−7.

The position of HESS J1745-290 agrees well with
the location of the other two counterpart candi-
dates, Sgr A∗ and G359.95-0.04, which are sep-
arated by only8.7′′. Since the pointing precision
obtained in this work is at the limit of what can
be achieved with an instrument such as H.E.S.S.,
other measures have to be taken to disentangle the
remaining source confusion. The most promising
method is to search for variability in the VHEγ-ray
flux, which would hint at a connection between the
VHE flux and Sgr A∗. The most convincing signa-
ture would be the detection of correlated flaring in
X-rays and VHEγ-rays. Such searches have been
presented at this conference [21, 22].
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